Advertisement

Renal Transport of Uric Acid: Evolving Concepts and Uncertainties

  • Ion Alexandru Bobulescu
    Correspondence
    Address correspondence to: Ion Alexandru Bobulescu, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-8856.
    Affiliations
    Departments of Internal Medicine and Physiology and the Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX
    Search for articles by this author
  • Orson W. Moe
    Affiliations
    Departments of Internal Medicine and Physiology and the Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX
    Search for articles by this author
      In addition to its role as a metabolic waste product, uric acid has been proposed to be an important molecule with multiple functions in human physiologic and pathophysiologic processes and may be linked to human diseases beyond nephrolithiasis and gout. Uric acid homeostasis is determined by the balance between production, intestinal secretion, and renal excretion. The kidney is an important regulator of circulating uric acid levels by reabsorbing about 90% of filtered urate and being responsible for 60% to 70% of total body uric acid excretion. Defective renal handling of urate is a frequent pathophysiologic factor underpinning hyperuricemia and gout. Despite tremendous advances over the past decade, the molecular mechanisms of renal urate transport are still incompletely understood. Many transport proteins are candidate participants in urate handling, with URAT1 and GLUT9 being the best characterized to date. Understanding these transporters is increasingly important for the practicing clinician as new research unveils their physiologic characteristics, importance in drug action, and genetic association with uric acid levels in human populations. The future may see the introduction of new drugs that act specifically on individual renal urate transporters for the treatment of hyperuricemia and gout.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Advances in Chronic Kidney Disease
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Nuki G.
        • Simkin P.A.
        A concise history of gout and hyperuricemia and their treatment.
        Arthritis Res Ther. 2006; 8: S1
        • Richet G.
        The chemistry of urinary stones around 1800: a first in clinical chemistry.
        Kidney Int. 1995; 48: 876-886
      1. Thomson T. Chemistry of Animal Bodies. 1858: Edinburgh, UK: 31. Digitized version available at http://books.google.com

        • Brondino C.D.
        • Romao M.J.
        • Moura I.
        • Moura J.J.
        Molybdenum and tungsten enzymes: the xanthine oxidase family.
        Curr Opin Chem Biol. 2006; 10: 109-114
        • Schlesinger N.
        New agents for the treatment of gout and hyperuricemia: febuxostat, puricase, and beyond.
        Curr Rheumatol Rep. 2010; 12: 130-134
        • Maesaka J.K.
        • Fishbane S.
        Regulation of renal urate excretion: a critical review.
        Am J Kidney Dis. 1998; 32: 917-933
        • Sorensen L.B.
        • Levinson D.J.
        Origin and extrarenal elimination of uric acid in man.
        Nephron. 1975; 14: 7-20
        • Sakhaee K.
        • Adams-Huet B.
        • Moe O.W.
        • Pak C.Y.
        Pathophysiologic basis for normouricosuric uric acid nephrolithiasis.
        Kidney Int. 2002; 62: 971-979
        • Oda M.
        • Satta Y.
        • Takenaka O.
        • Takahata N.
        Loss of urate oxidase activity in hominoids and its evolutionary implications.
        Mol Biol Evol. 2002; 19: 640-653
        • Wu X.
        • Wakamiya M.
        • Vaishnav S.
        • et al.
        Hyperuricemia and urate nephropathy in urate oxidase-deficient mice.
        Proc Natl Acad Sci U S A. 1994; 91: 742-746
        • Watanabe S.
        • Kang D.H.
        • Feng L.
        • et al.
        Uric acid, hominoid evolution, and the pathogenesis of salt-sensitivity.
        Hypertension. 2002; 40: 355-360
      2. Giebisch G, Kennedy T. National Academy of Sciences Biographical Memoir: Robert W. Berliner, 1915-2002. Available at: http://www.nasonline.org/publications/biographical-memoirs/memoir-pdfs/berliner-robert-w.pdf. Accessed August 1, 2012.

        • Gutman A.B.
        Renal excretion of uric acid in normal and gouty man.
        Arthritis Rheum. 1965; 8: 665-670
        • Shoemaker V.H.
        • Nagy K.A.
        Osmoregulation in amphibians and reptiles.
        Annu Rev Physiol. 1977; 39: 449-471
        • Braun E.J.
        Integration of organ systems in avian osmoregulation.
        J Exp Zool. 1999; 283: 702-707
        • Ames B.N.
        • Cathcart R.
        • Schwiers E.
        • Hochstein P.
        Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: a hypothesis.
        Proc Natl Acad Sci U S A. 1981; 78: 6858-6862
        • Frei B.
        • England L.
        • Ames B.N.
        Ascorbate is an outstanding antioxidant in human blood plasma.
        Proc Natl Acad Sci U S A. 1989; 86: 6377-6381
        • Kuzkaya N.
        • Weissmann N.
        • Harrison D.G.
        • Dikalov S.
        Interactions of peroxynitrite with uric acid in the presence of ascorbate and thiols: implications for uncoupling endothelial nitric oxide synthase.
        Biochem Pharmacol. 2005; 70: 343-354
        • Gagliardi A.C.
        • Miname M.H.
        • Santos R.D.
        Uric acid: a marker of increased cardiovascular risk.
        Atherosclerosis. 2009; 202: 11-17
        • Hayden M.R.
        • Tyagi S.C.
        Uric acid: a new look at an old risk marker for cardiovascular disease, metabolic syndrome, and type 2 diabetes mellitus: the urate redox shuttle.
        Nutr Metab (Lond). 2004; 1: 10
        • Sautin Y.Y.
        • Johnson R.J.
        Uric acid: the oxidant-antioxidant paradox.
        Nucleosides Nucleotides Nucleic Acids. 2008; 27: 608-619
        • Hershfield M.S.
        • Roberts 2nd, L.J.
        • Ganson N.J.
        • et al.
        Treating gout with pegloticase, a PEGylated urate oxidase, provides insight into the importance of uric acid as an antioxidant in vivo.
        Proc Natl Acad Sci U S A. 2010; 107: 14351-14356
        • Johnson R.J.
        • Segal M.S.
        • Srinivas T.
        • et al.
        Essential hypertension, progressive renal disease, and uric acid: a pathogenetic link?.
        J Am Soc Nephrol. 2005; 16: 1909-1919
        • Feig D.I.
        • Soletsky B.
        • Johnson R.J.
        Effect of allopurinol on blood pressure of adolescents with newly diagnosed essential hypertension: a randomized trial.
        JAMA. 2008; 300: 924-932
        • Shi Y.
        • Evans J.E.
        • Rock K.L.
        Molecular identification of a danger signal that alerts the immune system to dying cells.
        Nature. 2003; 425: 516-521
        • Martinon F.
        • Petrilli V.
        • Mayor A.
        • Tardivel A.
        • Tschopp J.
        Gout-associated uric acid crystals activate the NALP3 inflammasome.
        Nature. 2006; 440: 237-241
        • Passwell J.H.
        • Modan M.
        • Brish M.
        • Orda S.
        • Boichis H.
        Fractional excretion of uric acid in infancy and childhood. Index of tubular maturation.
        Arch Dis Child. 1974; 49: 878-882
        • Stapleton F.B.
        • Linshaw M.A.
        • Hassanein K.
        • Gruskin A.B.
        Uric acid excretion in normal children.
        J Pediatr. 1978; 92: 911-914
        • Stiburkova B.
        • Bleyer A.J.
        Changes in serum urate and urate excretion with age.
        Adv Chronic Kidney Dis. 2012; 19
        • Baum M.
        • Quigley R.
        • Satlin L.
        Maturational changes in renal tubular transport.
        Curr Opin Nephrol Hypertens. 2003; 12: 521-526
        • Dan T.
        • Tanaka H.
        • Koga H.
        Mechanism of uricosuric action of AA-193 in DBA/2N mice.
        J Pharmacol Exp Ther. 1990; 253: 437-443
        • Preitner F.
        • Bonny O.
        • Laverriere A.
        • et al.
        Glut9 is a major regulator of urate homeostasis and its genetic inactivation induces hyperuricosuria and urate nephropathy.
        Proc Natl Acad Sci U S A. 2009; 106: 15501-15506
        • Diamond H.S.
        • Paolino J.S.
        Evidence for a postsecretory reabsorptive site for uric acid in man.
        J Clin Invest. 1973; 52: 1491-1499
        • Gutman A.B.
        • Yu T.F.
        • Berger L.
        Tubular secretion of urate in man.
        J Clin Invest. 1959; 38: 1778-1781
        • Guggino S.E.
        • Aronson P.S.
        Paradoxical effects of pyrazinoate and nicotinate on urate transport in dog renal microvillus membranes.
        J Clin Invest. 1985; 76: 543-547
        • Enomoto A.
        • Kimura H.
        • Chairoungdua A.
        • et al.
        Molecular identification of a renal urate anion exchanger that regulates blood urate levels.
        Nature. 2002; 417: 447-452
        • So A.
        • Thorens B.
        Uric acid transport and disease.
        J Clin Invest. 2010; 120: 1791-1799
        • Anzai N.
        • Endou H.
        Urate transporters: an evolving field.
        Semin Nephrol. 2011; 31: 400-409
        • Lipkowitz M.S.
        Regulation of uric acid excretion by the kidney.
        Curr Rheumatol Rep. 2012; 14: 179-188
        • Tanaka M.
        • Itoh K.
        • Matsushita K.
        • et al.
        Two male siblings with hereditary renal hypouricemia and exercise-induced ARF.
        Am J Kidney Dis. 2003; 42: 1287-1292
        • Wakida N.
        • Tuyen D.G.
        • Adachi M.
        • et al.
        Mutations in human urate transporter 1 gene in presecretory reabsorption defect type of familial renal hypouricemia.
        J Clin Endocrinol Metab. 2005; 90: 2169-2174
        • Ichida K.
        • Hosoyamada M.
        • Kamatani N.
        • et al.
        Age and origin of the G774A mutation in SLC22A12 causing renal hypouricemia in Japanese.
        Clin Genet. 2008; 74: 243-251
        • Kolz M.
        • Johnson T.
        • Sanna S.
        • et al.
        Meta-analysis of 28,141 individuals identifies common variants within five new loci that influence uric acid concentrations.
        PLoS Genet. 2009; 5: e1000504
        • Tin A.
        • Woodward O.M.
        • Kao W.H.
        • et al.
        Genome-wide association study for serum urate concentrations and gout among African Americans identifies genomic risk loci and a novel URAT1 loss-of-function allele.
        Hum Mol Genet. 2011; 20: 4056-4068
        • Kenny E.E.
        • Kim M.
        • Gusev A.
        • et al.
        Increased power of mixed models facilitates association mapping of 10 loci for metabolic traits in an isolated population.
        Hum Mol Genet. 2011; 20: 827-839
        • Mori K.
        • Ogawa Y.
        • Ebihara K.
        • et al.
        Kidney-specific expression of a novel mouse organic cation transporter-like protein.
        FEBS Lett. 1997; 417: 371-374
        • Hosoyamada M.
        • Ichida K.
        • Enomoto A.
        • Hosoya T.
        • Endou H.
        Function and localization of urate transporter 1 in mouse kidney.
        J Am Soc Nephrol. 2004; 15: 261-268
        • Eraly S.A.
        • Vallon V.
        • Rieg T.
        • et al.
        Multiple organic anion transporters contribute to net renal excretion of uric acid.
        Physiol Genomics. 2008; 33: 180-192
        • Phay J.E.
        • Hussain H.B.
        • Moley J.F.
        Cloning and expression analysis of a novel member of the facilitative glucose transporter family, SLC2A9 (GLUT9).
        Genomics. 2000; 66: 217-220
        • Augustin R.
        • Carayannopoulos M.O.
        • Dowd L.O.
        • et al.
        Identification and characterization of human glucose transporter-like protein-9 (GLUT9): alternative splicing alters trafficking.
        J Biol Chem. 2004; 279: 16229-16236
        • Li S.
        • Sanna S.
        • Maschio A.
        • et al.
        The GLUT9 gene is associated with serum uric acid levels in Sardinia and Chianti cohorts.
        PLoS Genet. 2007; 3: e194
        • Dehghan A.
        • Kottgen A.
        • Yang Q.
        • et al.
        Association of three genetic loci with uric acid concentration and risk of gout: a genome-wide association study.
        Lancet. 2008; 372: 1953-1961
        • Doring A.
        • Gieger C.
        • Mehta D.
        • et al.
        SLC2A9 influences uric acid concentrations with pronounced sex-specific effects.
        Nat Genet. 2008; 40: 430-436
        • Vitart V.
        • Rudan I.
        • Hayward C.
        • et al.
        SLC2A9 is a newly identified urate transporter influencing serum urate concentration, urate excretion and gout.
        Nat Genet. 2008; 40: 437-442
        • Wallace C.
        • Newhouse S.J.
        • Braund P.
        • et al.
        Genome-wide association study identifies genes for biomarkers of cardiovascular disease: serum urate and dyslipidemia.
        Am J Hum Genet. 2008; 82: 139-149
        • Anzai N.
        • Ichida K.
        • Jutabha P.
        • et al.
        Plasma urate level is directly regulated by a voltage-driven urate efflux transporter URATv1 (SLC2A9) in humans.
        J Biol Chem. 2008; 283: 26834-26838
        • Matsuo H.
        • Chiba T.
        • Nagamori S.
        • et al.
        Mutations in glucose transporter 9 gene SLC2A9 cause renal hypouricemia.
        Am J Hum Genet. 2008; 83: 744-751
        • Kawamura Y.
        • Matsuo H.
        • Chiba T.
        • et al.
        Pathogenic GLUT9 mutations causing renal hypouricemia type 2 (RHUC2).
        Nucleosides Nucleotides Nucleic Acids. 2011; 30: 1105-1111
        • Dinour D.
        • Gray N.K.
        • Campbell S.
        • et al.
        Homozygous SLC2A9 mutations cause severe renal hypouricemia.
        J Am Soc Nephrol. 2010; 21: 64-72
        • Dinour D.
        • Gray N.K.
        • Ganon L.
        • et al.
        Two novel homozygous SLC2A9 mutations cause renal hypouricemia type 2.
        Nephrol Dial Transplant. 2012; 27: 1035-1041
        • Bibert S.
        • Hess S.K.
        • Firsov D.
        • et al.
        Mouse GLUT9: evidences for a urate uniporter.
        Am J Physiol Renal Physiol. 2009; 297: F612-F619
        • Keembiyehetty C.
        • Augustin R.
        • Carayannopoulos M.O.
        • et al.
        Mouse glucose transporter 9 splice variants are expressed in adult liver and kidney and are up-regulated in diabetes.
        Mol Endocrinol. 2006; 20: 686-697
        • Shikhman A.R.
        • Brinson D.C.
        • Valbracht J.
        • Lotz M.K.
        Cytokine regulation of facilitated glucose transport in human articular chondrocytes.
        J Immunol. 2001; 167: 7001-7008
        • Bahn A.
        • Hagos Y.
        • Reuter S.
        • et al.
        Identification of a new urate and high affinity nicotinate transporter, hOAT10 (SLC22A13).
        J Biol Chem. 2008; 283: 16332-16341
        • Gopal E.
        • Umapathy N.S.
        • Martin P.M.
        • et al.
        Cloning and functional characterization of human SMCT2 (SLC5A12) and expression pattern of the transporter in kidney.
        Biochim Biophys Acta. 2007; 1768: 2690-2697
        • Thangaraju M.
        • Ananth S.
        • Martin P.M.
        • et al.
        c/ebpdelta Null mouse as a model for the double knock-out of slc5a8 and slc5a12 in kidney.
        J Biol Chem. 2006; 281: 26769-26773
        • Frank H.
        • Groger N.
        • Diener M.
        • et al.
        Lactaturia and loss of sodium-dependent lactate uptake in the colon of SLC5A8-deficient mice.
        J Biol Chem. 2008; 283: 24729-24737
        • Eraly S.A.
        • Hamilton B.A.
        • Nigam S.K.
        Organic anion and cation transporters occur in pairs of similar and similarly expressed genes.
        Biochem Biophys Res Commun. 2003; 300: 333-342
        • Cha S.H.
        • Sekine T.
        • Kusuhara H.
        • et al.
        Molecular cloning and characterization of multispecific organic anion transporter 4 expressed in the placenta.
        J Biol Chem. 2000; 275: 4507-4512
        • Ekaratanawong S.
        • Anzai N.
        • Jutabha P.
        • et al.
        Human organic anion transporter 4 is a renal apical organic anion/dicarboxylate exchanger in the proximal tubules.
        J Pharmacol Sci. 2004; 94: 297-304
        • Hagos Y.
        • Stein D.
        • Ugele B.
        • Burckhardt G.
        • Bahn A.
        Human renal organic anion transporter 4 operates as an asymmetric urate transporter.
        J Am Soc Nephrol. 2007; 18: 430-439
        • Yang Q.
        • Kottgen A.
        • Dehghan A.
        • et al.
        Multiple genetic loci influence serum urate levels and their relationship with gout and cardiovascular disease risk factors.
        Circ Cardiovasc Genet. 2010; 3: 523-530
        • van der Harst P.
        • Bakker S.J.
        • de Boer R.A.
        • et al.
        Replication of the five novel loci for uric acid concentrations and potential mediating mechanisms.
        Hum Mol Genet. 2010; 19: 387-395
        • Ho H.T.
        • Ko B.C.
        • Cheung A.K.
        • et al.
        Generation and characterization of sodium-dicarboxylate cotransporter-deficient mice.
        Kidney Int. 2007; 72: 63-71
        • Leal-Pinto E.
        • Tao W.
        • Rappaport J.
        • et al.
        Molecular cloning and functional reconstitution of a urate transporter/channel.
        J Biol Chem. 1997; 272: 617-625
        • Lipkowitz M.S.
        • Leal-Pinto E.
        • Rappoport J.Z.
        • Najfeld V.
        • Abramson R.G.
        Functional reconstitution, membrane targeting, genomic structure, and chromosomal localization of a human urate transporter.
        J Clin Invest. 2001; 107: 1103-1115
        • Hyink D.P.
        • Rappoport J.Z.
        • Wilson P.D.
        • Abramson R.G.
        Expression of the urate transporter/channel is developmentally regulated in human kidneys.
        Am J Physiol Renal Physiol. 2001; 281: F875-F886
        • Werner A.
        • Moore M.L.
        • Mantei N.
        • et al.
        Cloning and expression of cDNA for a Na/Pi cotransport system of kidney cortex.
        Proc Natl Acad Sci U S A. 1991; 88: 9608-9612
        • Chong S.S.
        • Kristjansson K.
        • Zoghbi H.Y.
        • Hughes M.R.
        Molecular cloning of the cDNA encoding a human renal sodium phosphate transport protein and its assignment to chromosome 6p21.3-p23.
        Genomics. 1993; 18: 355-359
        • Ruddy D.A.
        • Kronmal G.S.
        • Lee V.K.
        • et al.
        A 1.1-Mb transcript map of the hereditary hemochromatosis locus.
        Genome Res. 1997; 7: 441-456
        • Biber J.
        • Custer M.
        • Werner A.
        • Kaissling B.
        • Murer H.
        Localization of NaPi-1, a Na/Pi cotransporter, in rabbit kidney proximal tubules. II. Localization by immunohistochemistry.
        Pflugers Arch. 1993; 424: 210-215
        • Ishibashi K.
        • Matsuzaki T.
        • Takata K.
        • Imai M.
        Identification of a new member of type I Na/phosphate co-transporter in the rat kidney.
        Nephron Physiol. 2003; 94: 10-18
        • Jutabha P.
        • Anzai N.
        • Kitamura K.
        • et al.
        Human sodium phosphate transporter 4 (hNPT4/SLC17A3) as a common renal secretory pathway for drugs and urate.
        J Biol Chem. 2010; 285: 35123-35132
        • Biber J.
        • Hernando N.
        • Forster I.
        • Murer H.
        Regulation of phosphate transport in proximal tubules.
        Pflugers Arch. 2009; 458: 39-52
        • Urano W.
        • Taniguchi A.
        • Anzai N.
        • et al.
        Sodium-dependent phosphate cotransporter type 1 sequence polymorphisms in male patients with gout.
        Ann Rheum Dis. 2010; 69: 1232-1234
        • Hollis-Moffatt J.E.
        • Phipps-Green A.J.
        • Chapman B.
        • et al.
        The renal urate transporter SLC17A1 locus: confirmation of association with gout.
        Arthritis Res Ther. 2012; 14: R92
        • Iharada M.
        • Miyaji T.
        • Fujimoto T.
        • et al.
        Type 1 sodium-dependent phosphate transporter (SLC17A1 Protein) is a Cl(-)-dependent urate exporter.
        J Biol Chem. 2010; 285: 26107-26113
        • Doyle L.A.
        • Yang W.
        • Abruzzo L.V.
        • et al.
        A multidrug resistance transporter from human MCF-7 breast cancer cells.
        Proc Natl Acad Sci U S A. 1998; 95: 15665-15670
        • Woodward O.M.
        • Kottgen A.
        • Coresh J.
        • et al.
        Identification of a urate transporter, ABCG2, with a common functional polymorphism causing gout.
        Proc Natl Acad Sci U S A. 2009; 106: 10338-10342
        • Yamagishi K.
        • Tanigawa T.
        • Kitamura A.
        • et al.
        The rs2231142 variant of the ABCG2 gene is associated with uric acid levels and gout among Japanese people.
        Rheumatology (Oxford). 2010; 49: 1461-1465
        • Phipps-Green A.J.
        • Hollis-Moffatt J.E.
        • Dalbeth N.
        • et al.
        A strong role for the ABCG2 gene in susceptibility to gout in New Zealand Pacific Island and Caucasian, but not Maori, case and control sample sets.
        Hum Mol Genet. 2010; 19: 4813-4819
        • Huls M.
        • Brown C.D.
        • Windass A.S.
        • et al.
        The breast cancer resistance protein transporter ABCG2 is expressed in the human kidney proximal tubule apical membrane.
        Kidney Int. 2008; 73: 220-225
        • Matsuo H.
        • Takada T.
        • Ichida K.
        • et al.
        Common defects of ABCG2, a high-capacity urate exporter, cause gout: a function-based genetic analysis in a Japanese population.
        Sci Transl Med. 2009; 1: 5ra11
        • Hosomi A.
        • Nakanishi T.
        • Fujita T.
        • Tamai I.
        Extra-renal elimination of uric acid via intestinal efflux transporter BCRP/ABCG2.
        PloS One. 2012; 7: e30456
        • Ichida K.
        • Matsuo H.
        • Takada T.
        • et al.
        Decreased extra-renal urate excretion is a common cause of hyperuricemia.
        Nat Commun. 2012; 3: 764
        • Maliepaard M.
        • Scheffer G.L.
        • Faneyte I.F.
        • et al.
        Subcellular localization and distribution of the breast cancer resistance protein transporter in normal human tissues.
        Cancer Res. 2001; 61: 3458-3464
        • van Aubel R.A.
        • Smeets P.H.
        • Peters J.G.
        • Bindels R.J.
        • Russel F.G.
        The MRP4/ABCC4 gene encodes a novel apical organic anion transporter in human kidney proximal tubules: putative efflux pump for urinary cAMP and cGMP.
        J Am Soc Nephrol. 2002; 13: 595-603
        • Lee K.
        • Belinsky M.G.
        • Bell D.W.
        • Testa J.R.
        • Kruh G.D.
        Isolation of MOAT-B, a widely expressed multidrug resistance-associated protein/canalicular multispecific organic anion transporter-related transporter.
        Cancer Res. 1998; 58: 2741-2747
        • Bakhiya A.
        • Bahn A.
        • Burckhardt G.
        • Wolff N.
        Human organic anion transporter 3 (hOAT3) can operate as an exchanger and mediate secretory urate flux.
        Cell Physiol Biochem. 2003; 13: 249-256
        • Ichida K.
        • Hosoyamada M.
        • Kimura H.
        • et al.
        Urate transport via human PAH transporter hOAT1 and its gene structure.
        Kidney Int. 2003; 63: 143-155
        • Hosoyamada M.
        • Takiue Y.
        • Morisaki H.
        • et al.
        Establishment and analysis of SLC22A12 (URAT1) knockout mouse.
        Nucleosides Nucleotides Nucleic Acids. 2010; 29: 314-320
        • Sharma S.
        • Sundararajan A.
        • Suryawanshi A.
        • et al.
        T cell immunoglobulin and mucin protein-3 (Tim-3)/Galectin-9 interaction regulates influenza A virus-specific humoral and CD8 T-cell responses.
        Proc Natl Acad Sci U S A. 2011; 108: 19001-19006
        • Assem M.
        • Schuetz E.G.
        • Leggas M.
        • et al.
        Interactions between hepatic Mrp4 and Sult2a as revealed by the constitutive androstane receptor and Mrp4 knockout mice.
        J Biol Chem. 2004; 279: 22250-22257
        • Van Aubel R.A.
        • Smeets P.H.
        • van den Heuvel J.J.
        • Russel F.G.
        Human organic anion transporter MRP4 (ABCC4) is an efflux pump for the purine end metabolite urate with multiple allosteric substrate binding sites.
        Am J Physiol Renal Physiol. 2005; 288: F327-F333
        • Shimada H.
        • Moewes B.
        • Burckhardt G.
        Indirect coupling to Na+ of p-aminohippuric acid uptake into rat renal basolateral membrane vesicles.
        Am J Physiol. 1987; 253: F795-F801
        • Kaufhold M.
        • Schulz K.
        • Breljak D.
        • et al.
        Differential interaction of dicarboxylates with human sodium-dicarboxylate cotransporter 3 and organic anion transporters 1 and 3.
        Am J Physiol Renal Physiol. 2011; 301: F1026-F1034