Advertisement

Dietary Acid Load: A Novel Nutritional Target in Chronic Kidney Disease?

  • Julia J. Scialla
    Correspondence
    Address correspondence to Julia J. Scialla, MD, MHS, Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, 1120 NW 14th Street, Suite 815, Miami, FL 33136.
    Affiliations
    Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL; and Department of Epidemiology, Johns Hopkins University, Baltimore, MD
    Search for articles by this author
  • Cheryl A.M. Anderson
    Affiliations
    Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL; and Department of Epidemiology, Johns Hopkins University, Baltimore, MD
    Search for articles by this author
      Nonvolatile acid is produced from the metabolism of organic sulfur in dietary protein and the production of organic anions during the combustion of neutral foods. Organic anion salts that are found primarily in plant foods are directly absorbed in the gastrointestinal tract and yield bicarbonate. The difference between endogenously produced nonvolatile acid and absorbed alkali precursors yields the dietary acid load, technically known as the net endogenous acid production, and must be excreted by the kidney to maintain acid-base balance. Although typically 1 mEq/kg/day, dietary acid load is lower with greater intake of fruits and vegetables. In the setting of CKD, a high dietary acid load invokes adaptive mechanisms to increase acid excretion despite reduced nephron number, such as increased per nephron ammoniagenesis and augmented distal acid excretion mediated by the renin-angiotensin system and endothelin-1. These adaptations may promote kidney injury. Additionally, high dietary acid loads produce low-grade, subclinical acidosis that may result in bone and muscle loss. Early studies suggest that lowering the dietary acid load can improve subclinical acidosis, preserve bone and muscle, and slow the decline of glomerular filtration rate in animal models and humans. Studies focusing on hard clinical outcomes are needed.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Advances in Chronic Kidney Disease
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Gonick H.C.
        • Goldberg G.
        • Mulcare D.
        Reexamination of the acid-ash content of several diets.
        Am J Clin Nutr. 1968; 21: 898-903
        • Sebastian A.
        • Frassetto L.A.
        • Sellmeyer D.E.
        • Merriam R.L.
        • Morris Jr., R.C.
        Estimation of the net acid load of the diet of ancestral preagricultural Homo sapiens and their hominid ancestors.
        Am J Clin Nutr. 2002; 76: 1308-1316
        • Strohle A.
        • Hahn A.
        • Sebastian A.
        Estimation of the diet-dependent net acid load in 229 worldwide historically studied hunter-gatherer societies.
        Am J Clin Nutr. 2010; 91: 406-412
        • Remer T.
        • Manz F.
        Paleolithic diet, sweet potato eaters, and potential renal acid load.
        Am J Clin Nutr. 2003; 78: 802-803
        • Cordain L.
        • Eaton S.B.
        • Sebastian A.
        • et al.
        Origins and evolution of the Western diet: Health implications for the 21st century.
        Am J Clin Nutr. 2005; 81: 341-354
        • Scialla J.J.
        • Appel L.J.
        • Astor B.C.
        • et al.
        Net endogenous acid production is associated with a faster decline in GFR in African Americans.
        Kidney Int. 2012; 82: 106-112
        • Goraya N.
        • Simoni J.
        • Jo C.
        • Wesson D.E.
        Dietary acid reduction with fruits and vegetables or bicarbonate attenuates kidney injury in patients with a moderately reduced glomerular filtration rate due to hypertensive nephropathy.
        Kidney Int. 2012; 81: 86-93
        • Frassetto L.
        • Morris Jr., R.C.
        • Sebastian A.
        Potassium bicarbonate reduces urinary nitrogen excretion in postmenopausal women.
        J Clin Endocrinol Metab. 1997; 82: 254-259
        • Sebastian A.
        • Harris S.T.
        • Ottaway J.H.
        • Todd K.M.
        • Morris Jr., R.C.
        Improved mineral balance and skeletal metabolism in postmenopausal women treated with potassium bicarbonate.
        N Engl J Med. 1994; 330: 1776-1781
        • DuBose Jr., T.D.
        Disorders of acid-base balance.
        in: Brenner B.M. The Kidney. Saunders Elsevier, Philadelphia, PA2007: 505-547
        • Trilok G.
        • Draper H.H.
        Sources of protein-induced endogenous acid production and excretion by human adults.
        Calcif Tissue Int. 1989; 44: 335-338
        • Relman A.S.
        • Lennon E.J.
        • Lemann Jr., J.
        Endogenous production of fixed acid and the measurement of the net balance of acid in normal subjects.
        J Clin Invest. 1961; 40: 1621-1630
        • Lennon E.J.
        • Lemann Jr., J.
        Influence of diet composition on endogenous fixed acid production.
        Am J Clin Nutr. 1968; 21: 451-456
        • Frassetto L.A.
        • Lanham-New S.A.
        • Macdonald H.M.
        • et al.
        Standardizing terminology for estimating the diet-dependent net acid load to the metabolic system.
        J Nutr. 2007; 137: 1491-1492
        • Schuette S.A.
        • Hegsted M.
        • Zemel M.B.
        • Linkswiler H.M.
        Renal acid, urinary cyclic AMP, and hydroxyproline excretion as affected by level of protein, sulfur amino acid, and phosphorus intake.
        J Nutr. 1981; 111: 2106-2116
        • Lemann Jr., J.
        • Relman A.S.
        The relation of sulfur metabolism to acid-base balance and electrolyte excretion: The effects of DL-methionine in normal man.
        J Clin Invest. 1959; 38: 2215-2223
        • Lennon E.J.
        • Lemann Jr., J.
        • Litzow J.R.
        The effects of diet and stool composition on the net external acid balance of normal subjects.
        J Clin Invest. 1966; 45: 1601-1607
        • Hood V.L.
        • Tannen R.L.
        Protection of acid-base balance by pH regulation of acid production.
        N Engl J Med. 1998; 339: 819-826
        • Brown J.C.
        • Packer R.K.
        • Knepper M.A.
        Role of organic anions in renal response to dietary acid and base loads.
        Am J Physiol. 1989; 257: F170-F176
        • Packer R.K.
        • Curry C.A.
        • Brown K.M.
        Urinary organic anion excretion in response to dietary acid and base loading.
        J Am Soc Nephrol. 1995; 5: 1624-1629
        • Jenkins A.D.
        • Dousa T.P.
        • Smith L.H.
        Transport of citrate across renal brush border membrane: Effects of dietary acid and alkali loading.
        Am J Physiol. 1985; 249: F590-F595
        • Remer T.
        • Manz F.
        Potential renal acid load of foods and its influence on urine pH.
        J Am Diet Assoc. 1995; 95: 791-797
        • Remer T.
        • Manz F.
        Estimation of the renal net acid excretion by adults consuming diets containing variable amounts of protein.
        Am J Clin Nutr. 1994; 59: 1356-1361
        • Remer T.
        • Dimitriou T.
        • Manz F.
        Dietary potential renal acid load and renal net acid excretion in healthy, free-living children and adolescents.
        Am J Clin Nutr. 2003; 77: 1255-1260
        • Frassetto L.A.
        • Todd K.M.
        • Morris Jr., R.C.
        • Sebastian A.
        Estimation of net endogenous noncarbonic acid production in humans from diet potassium and protein contents.
        Am J Clin Nutr. 1998; 68: 576-583
        • Oster J.
        • Lopez R.
        • Perez G.
        • Alpert H.
        • Al-Reshaid K.
        • Vaamonde C.
        The stability of pH, pCO2 and calculated [HCO3] of urine samples collected under oil.
        Nephron. 1988; 50: 320-324
        • Yi J.-H.
        • Shin H.-J.
        • Kim S.-M.
        • Han S.-W.
        • Kim H.-J.
        • Oh M.-S.
        Does the exposure of urine samples to air affect diagnostic tests for urine acidification?.
        Clin J Am Soc Nephrol. 2012; 7: 1211-1216
        • Bingham S.A.
        • Gill C.
        • Welch A.
        • et al.
        Validation of dietary assessment methods in the UK arm of EPIC using weighed records, and 24-hour urinary nitrogen and potassium and serum vitamin C and carotenoids as biomarkers.
        Int J Epidemiol. 1997; 26: S137
        • Welch A.A.
        • Mulligan A.
        • Bingham S.A.
        • Khaw K.T.
        Urine pH is an indicator of dietary acid-base load, fruit and vegetables and meat intakes: Results from the European Prospective Investigation into Cancer and Nutrition (EPIC)-Norfolk population study.
        Br J Nutr. 2008; 99: 1335-1343
        • Berkemeyer S.
        • Vormann J.
        • Gunther A.L.
        • Rylander R.
        • Frassetto L.A.
        • Remer T.
        Renal net acid excretion capacity is comparable in prepubescence, adolescence, and young adulthood but falls with aging.
        J Am Geriatr Soc. 2008; 56: 1442-1448
        • Arruda J.A.
        • Kurtzman N.A.
        Mechanisms and classification of deranged distal urinary acidification.
        Am J Physiol. 1980; 239: F515-F523
        • Kim S.
        • Lee J.W.
        • Park J.
        • et al.
        The urine-blood PCO gradient as a diagnostic index of H(+)-ATPase defect distal renal tubular acidosis.
        Kidney Int. 2004; 66: 761-767
        • DuBose Jr., T.D.
        • Caflisch C.R.
        Validation of the difference in urine and blood carbon dioxide tension during bicarbonate loading as an index of distal nephron acidification in experimental models of distal renal tubular acidosis.
        J Clin Invest. 1985; 75: 1116-1123
        • Scialla J.J.
        • Appel L.J.
        • Wolf M.
        • et al.
        Plant protein intake is associated with fibroblast growth factor 23 and serum bicarbonate levels in patients with chronic kidney disease: The Chronic Renal Insufficiency Cohort Study.
        J Ren Nutr. 2012; 22 (e371): 379-388
        • Strohle A.
        • Waldmann A.
        • Koschizke J.
        • Leitzmann C.
        • Hahn A.
        Diet-dependent net endogenous acid load of vegan diets in relation to food groups and bone health-related nutrients: Results from the German Vegan Study.
        Ann Nutr Metab. 2011; 59: 117-126
        • Engberink M.F.
        • Bakker S.J.
        • Brink E.J.
        • et al.
        Dietary acid load and risk of hypertension: The Rotterdam Study.
        Am J Clin Nutr. 2012; 95: 1438-1444
        • Prynne C.J.
        • Ginty F.
        • Paul A.A.
        • et al.
        Dietary acid-base balance and intake of bone-related nutrients in Cambridge teenagers.
        Eur J Clin Nutr. 2004; 58: 1462-1471
        • Gannon R.H.
        • Millward D.J.
        • Brown J.E.
        • et al.
        Estimates of daily net endogenous acid production in the elderly UK population: Analysis of the National Diet and Nutrition Survey (NDNS) of British adults aged 65 years and over.
        Br J Nutr. 2008; 100: 615-623
        • Murakami K.
        • Sasaki S.
        • Takahashi Y.
        • Uenishi K.
        Association between dietary acid-base load and cardiometabolic risk factors in young Japanese women.
        Br J Nutr. 2008; 100: 642-651
        • Smit E.
        • Nieto F.J.
        • Crespo C.J.
        • Mitchell P.
        Estimates of animal and plant protein intake in US adults: Results from the Third National Health and Nutrition Examination Survey, 1988-1991.
        J Am Diet Assoc. 1999; 99: 813-820
      1. Rhodes D, Clemens J, Goldman J, LaComb R, Moshfegh A. 2009-2010 What We Eat In America, NHANES Tables 1-36. Worldwide Web Site: Food Surveys Research Group, 2012.

        • Ausman L.M.
        • Oliver L.M.
        • Goldin B.R.
        • Woods M.N.
        • Gorbach S.L.
        • Dwyer J.T.
        Estimated net acid excretion inversely correlates with urine pH in vegans, lacto-ovo vegetarians, and omnivores.
        J Ren Nutr. 2008; 18: 456-465
        • Zhang L.
        • Curhan G.C.
        • Forman J.P.
        Diet-dependent net acid load and risk of incident hypertension in United States women.
        Hypertension. 2009; 54: 751-755
        • Scialla J.J.
        • Appel L.J.
        • Astor B.C.
        • et al.
        Estimated net endogenous acid production and serum bicarbonate in African Americans with chronic kidney disease.
        Clin J Am Soc Nephrol. 2011; 6: 1526-1532
        • Appel L.J.
        • Moore T.J.
        • Obarzanek E.
        • et al.
        A clinical trial of the effects of dietary patterns on blood pressure. DASH Collaborative Research Group.
        N Engl J Med. 1997; 336: 1117-1124
        • Sebastian A.
        • Sellmeyer D.E.
        • Stone K.L.
        • Cummings S.R.
        Dietary ratio of animal to vegetable protein and rate of bone loss and risk of fracture in postmenopausal women.
        Am J Clin Nutr. 2001; 74: 411-412
        • Patterson B.H.
        • Block G.
        • Rosenberger W.F.
        • Pee D.
        • Kahle L.L.
        Fruit and vegetables in the American diet: Data from the NHANES II survey.
        Am J Public Health. 1990; 80: 1443-1449
        • Hsu C.Y.
        • Chertow G.M.
        Elevations of serum phosphorus and potassium in mild to moderate chronic renal insufficiency.
        Nephrol Dial Transplant. 2002; 17: 1419-1425
        • Moranne O.
        • Froissart M.
        • Rossert J.
        • et al.
        Timing of onset of CKD-related metabolic complications.
        J Am Soc Nephrol. 2009; 20: 164-171
        • Bowling C.B.
        • Inker L.A.
        • Gutierrez O.M.
        • et al.
        Age-specific associations of reduced estimated glomerular filtration rate with concurrent chronic kidney disease complications.
        Clin J Am Soc Nephrol. 2011; 6: 2822-2828
        • Kraut J.A.
        • Kurtz I.
        Metabolic acidosis of CKD: Diagnosis, clinical characteristics, and treatment.
        Am J Kidney Dis. 2005; 45: 978-993
        • Lemann Jr., J.
        • Lennon E.J.
        • Goodman A.D.
        • Litzow J.R.
        • Relman A.S.
        The net balance of acid in subjects given large loads of acid or alkali.
        J Clin Invest. 1965; 44: 507-517
        • Litzow J.R.
        • Lemann Jr., J.
        • Lennon E.J.
        The effect of treatment of acidosis on calcium balance in patients with chronic azotemic renal disease.
        J Clin Invest. 1967; 46: 280-286
        • Lemann Jr., J.
        • Litzow J.R.
        • Lennon E.J.
        The effects of chronic acid loads in normal man: Further evidence for the participation of bone mineral in the defense against chronic metabolic acidosis.
        J Clin Invest. 1966; 45: 1608-1614
        • Bushinsky D.A.
        Acid-base imbalance and the skeleton.
        Eur J Nutr. 2001; 40: 238-244
        • Wesson D.E.
        • Simoni J.
        • Broglio K.
        • Sheather S.
        Acid retention accompanies reduced GFR in humans and increases plasma levels of endothelin and aldosterone.
        Am J Physiol Renal Physiol. 2011; 300: F830-F837
        • Wesson D.E.
        Dietary acid increases blood and renal cortical acid content in rats.
        Am J Physiol. 1998; 274: F97-F103
        • Wesson D.E.
        • Simoni J.
        Increased tissue acid mediates a progressive decline in the glomerular filtration rate of animals with reduced nephron mass.
        Kidney Int. 2009; 75: 929-935
        • Frassetto L.A.
        • Morris Jr., R.C.
        • Sebastian A.
        Effect of age on blood acid-base composition in adult humans: Role of age-related renal functional decline.
        Am J Physiol. 1996; 271: F1114-F1122
        • Menon V.
        • Tighiouart H.
        • Vaughn N.S.
        • et al.
        Serum bicarbonate and long-term outcomes in CKD.
        Am J Kidney Dis. 2010; 56: 907-914
        • Raphael K.L.
        • Wei G.
        • Baird B.C.
        • Greene T.
        • Beddhu S.
        Higher serum bicarbonate levels within the normal range are associated with better survival and renal outcomes in African Americans.
        Kidney Int. 2010; 79: 356-362
        • Shah S.N.
        • Abramowitz M.
        • Hostetter T.H.
        • Melamed M.L.
        Serum bicarbonate levels and the progression of kidney disease: A cohort study.
        Am J Kidney Dis. 2009; 54: 270-277
        • de Brito-Ashurst I.
        • Varagunam M.
        • Raftery M.J.
        • Yaqoob M.M.
        Bicarbonate supplementation slows progression of CKD and improves nutritional status.
        J Am Soc Nephrol. 2009; 20: 2075-2084
        • Mahajan A.
        • Simoni J.
        • Sheather S.J.
        • Broglio K.R.
        • Rajab M.H.
        • Wesson D.E.
        Daily oral sodium bicarbonate preserves glomerular filtration rate by slowing its decline in early hypertensive nephropathy.
        Kidney Int. 2010; 78: 303-309
        • Klahr S.
        • Levey A.S.
        • Beck G.J.
        • et al.
        The effects of dietary protein restriction and blood-pressure control on the progression of chronic renal disease.
        N Engl J Med. 1994; 330: 877-884
        • Levey A.S.
        • Greene T.
        • Sarnak M.J.
        • et al.
        Effect of dietary protein restriction on the progression of kidney disease: Long-term follow-up of the Modification of Diet in Renal Disease (MDRD) study.
        Am J Kidney Dis. 2006; 48: 879-888
        • Levey A.S.
        • Greene T.
        • Beck G.J.
        • et al.
        Dietary protein restriction and the progression of chronic renal disease: What have all of the results of the MDRD study shown?.
        J Am Soc Nephrol. 1999; 10: 2426-2439
        • Pedrini M.T.
        • Levey A.S.
        • Lau J.
        • Chalmers T.C.
        • Wang P.H.
        The effect of dietary protein restriction on the progression of diabetic and nondiabetic renal diseases: A meta-analysis.
        Ann Intern Med. 1996; 124: 627-632
        • Nath K.A.
        • Hostetter M.K.
        • Hostetter T.H.
        Pathophysiology of chronic tubulo-interstitial disease in rats. Interactions of dietary acid load, ammonia, and complement component C3.
        J Clin Invest. 1985; 76: 667-675
        • Khanna A.
        • Simoni J.
        • Hacker C.
        • Duran M.J.
        • Wesson D.E.
        Increased endothelin activity mediates augmented distal nephron acidification induced by dietary protein.
        J Am Soc Nephrol. 2004; 15: 2266-2275
        • Dorhout-Mees E.J.
        • Machado M.
        • Slatopolsky E.
        • Klahr S.
        • Bricker N.S.
        The functional adaptation of the diseased kidney: III. Ammonium excretion.
        J Clin Invest. 1966; 15: 289-296
        • Tizianello A.
        • De Ferrari G.
        • Garibotto G.
        • Gurreri G.
        • Robaudo C.
        Renal metabolism of amino acids and ammonia in subjects with normal renal function and in patients with chronic renal insufficiency.
        J Clin Invest. 1980; 65: 1162-1173
        • Busque S.M.
        • Wagner C.A.
        Potassium restriction, high protein intake, and metabolic acidosis increase expression of the glutamine transporter SNAT3 (Slc38a3) in mouse kidney.
        Am J Physiol Ren Physiol. 2009; 297: F440-F450
        • Packer R.K.
        • Desai S.S.
        • Hornbuckle K.
        • Knepper M.A.
        Role of countercurrent multiplication in renal ammonium handling: Regulation of medullary ammonium accumulation.
        J Am Soc Nephrol. 1991; 2: 77-83
        • Wesson D.E.
        • Jo C.-H.
        • Simoni J.
        Angiotensin II receptors mediate increased distal nephron acidification caused by acid retention.
        Kidney Int. 2012; 82: 1184-1194
        • Ng H.Y.
        • Chen H.C.
        • Tsai Y.C.
        • Yang Y.K.
        • Lee C.T.
        Activation of intrarenal renin-angiotensin system during metabolic acidosis.
        Am J Nephrol. 2011; 34: 55-63
        • Levine D.Z.
        • Iacovitti M.
        • Buckman S.
        • Hincke M.T.
        • Luck B.
        • Fryer J.N.
        ANG II-dependent HCO3- reabsorption in surviving rat distal tubules: Expression/activation of H(+)-ATPase.
        Am J Physiol. 1997; 272: F799-F808
        • Wesson D.E.
        Endogenous endothelins mediate increased distal tubule acidification induced by dietary acid in rats.
        J Clin Invest. 1997; 99: 2203-2211
        • Wesson D.E.
        Endogenous endothelins mediate increased acidification in remnant kidneys.
        J Am Soc Nephrol. 2001; 12: 1826-1835
        • Tolins J.P.
        • Hostetter M.K.
        • Hostetter T.H.
        Hypokalemic nephropathy in the rat. Role of ammonia in chronic tubular injury.
        J Clin Invest. 1987; 79: 1447-1458
        • Phisitkul S.
        • Hacker C.
        • Simoni J.
        • Tran R.M.
        • Wesson D.E.
        Dietary protein causes a decline in the glomerular filtration rate of the remnant kidney mediated by metabolic acidosis and endothelin receptors.
        Kidney Int. 2008; 73: 192-199
        • Wesson D.E.
        • Simoni J.
        Acid retention during kidney failure induces endothelin and aldosterone production which lead to progressive GFR decline, a situation ameliorated by alkali diet.
        Kidney Int. 2010; 78: 1128-1135
        • Gadola L.
        • Noboa O.
        • Marquez M.N.
        • et al.
        Calcium citrate ameliorates the progression of chronic renal injury.
        Kidney Int. 2004; 65: 1224-1230
        • Phisitkul S.
        • Khanna A.
        • Simoni J.
        • et al.
        Amelioration of metabolic acidosis in patients with low GFR reduced kidney endothelin production and kidney injury, and better preserved GFR.
        Kidney Int. 2010; 77: 617-623
        • Ballmer P.E.
        • McNurlan M.A.
        • Hulter H.N.
        • Anderson S.E.
        • Garlick P.J.
        • Krapf R.
        Chronic metabolic acidosis decreases albumin synthesis and induces negative nitrogen balance in humans.
        J Clin Invest. 1995; 95: 39-45
        • May R.C.
        • Kelly R.A.
        • Mitch W.E.
        Metabolic acidosis stimulates protein degradation in rat muscle by a glucocorticoid-dependent mechanism.
        J Clin Invest. 1986; 77: 614-621
        • May R.C.
        • Kelly R.A.
        • Mitch W.E.
        Mechanisms for defects in muscle protein metabolism in rats with chronic uremia. Influence of metabolic acidosis.
        J Clin Invest. 1987; 79: 1099-1103
        • Mitch W.E.
        • Medina R.
        • Grieber S.
        • et al.
        Metabolic acidosis stimulates muscle protein degradation by activating the adenosine triphosphate-dependent pathway involving ubiquitin and proteasomes.
        J Clin Invest. 1994; 93: 2127-2133
        • Eustace J.A.
        • Astor B.
        • Muntner P.M.
        • Ikizler T.A.
        • Coresh J.
        Prevalence of acidosis and inflammation and their association with low serum albumin in chronic kidney disease.
        Kidney Int. 2004; 65: 1031-1040
        • Krieger N.S.
        • Sessler N.E.
        • Bushinsky D.A.
        Acidosis inhibits osteoblastic and stimulates osteoclastic activity in vitro.
        Am J Physiol. 1992; 262: F442-F448
        • Reaich D.
        • Channon S.M.
        • Scrimgeour C.M.
        • Daley S.E.
        • Wilkinson R.
        • Goodship T.H.
        Correction of acidosis in humans with CRF decreases protein degradation and amino acid oxidation.
        Am J Physiol. 1993; 265: E230-E235
        • Domrongkitchaiporn S.
        • Pongskul C.
        • Sirikulchayanonta V.
        • et al.
        Bone histology and bone mineral density after correction of acidosis in distal renal tubular acidosis.
        Kidney Int. 2002; 62: 2160-2166
        • Cochran M.
        • Wilkinson R.
        Effect of correction of metabolic acidosis on bone mineralisation rates in patients with renal osteomalacia.
        Nephron. 1975; 15: 98-110
        • Papadoyannakis N.J.
        • Stefanidis C.J.
        • McGeown M.
        The effect of the correction of metabolic acidosis on nitrogen and potassium balance of patients with chronic renal failure.
        Am J Clin Nutr. 1984; 40: 623-627
        • McSherry E.
        Acidosis and growth in nonuremic renal disease.
        Kidney Int. 1978; 14: 349-354
        • McSherry E.
        • Morris Jr., R.C.
        Attainment and maintenance of normal stature with alkali therapy in infants and children with classic renal tubular acidosis.
        J Clin Invest. 1978; 61: 509-527
        • McLean R.R.
        • Qiao N.
        • Broe K.E.
        • et al.
        Dietary acid load is not associated with lower bone mineral density except in older men.
        J Nutr. 2011; 141: 588-594
        • Dawson-Hughes B.
        • Harris S.S.
        Calcium intake influences the association of protein intake with rates of bone loss in elderly men and women.
        Am J Clin Nutr. 2002; 75: 773-779
        • Maurer M.
        • Riesen W.
        • Muser J.
        • Hulter H.N.
        • Krapf R.
        Neutralization of Western diet inhibits bone resorption independently of K intake and reduces cortisol secretion in humans.
        Am J Physiol Ren Physiol. 2003; 284: F32-F40
        • Lin P.H.
        • Ginty F.
        • Appel L.J.
        • et al.
        The DASH diet and sodium reduction improve markers of bone turnover and calcium metabolism in adults.
        J Nutr. 2003; 133: 3130-3136
        • New S.A.
        • MacDonald H.M.
        • Campbell M.K.
        • et al.
        Lower estimates of net endogenous non-carbonic acid production are positively associated with indexes of bone health in premenopausal and perimenopausal women.
        Am J Clin Nutr. 2004; 79: 131-138
        • Sellmeyer D.E.
        • Stone K.L.
        • Sebastian A.
        • Cummings S.R.
        A high ratio of dietary animal to vegetable protein increases the rate of bone loss and the risk of fracture in postmenopausal women. Study of Osteoporotic Fractures Research Group.
        Am J Clin Nutr. 2001; 73: 118-122
        • Frassetto L.A.
        • Todd K.M.
        • Morris Jr., R.C.
        • Sebastian A.
        Worldwide incidence of hip fracture in elderly women: Relation to consumption of animal and vegetable foods.
        J Gerontol A Biol Sci Med Sci. 2000; 55: M585-M592
        • Hannan M.T.
        • Tucker K.L.
        • Dawson-Hughes B.
        • Cupples L.A.
        • Felson D.T.
        • Kiel D.P.
        Effect of dietary protein on bone loss in elderly men and women: The Framingham Osteoporosis Study.
        J Bone Miner Res. 2000; 15: 2504-2512
        • Misra D.
        • Berry S.D.
        • Broe K.E.
        • et al.
        Does dietary protein reduce hip fracture risk in elders? The Framingham Osteoporosis Study.
        Osteoporos Int. 2011; 22: 345-349
        • Roshanravan B.
        • Khatri M.
        • Robinson-Cohen C.
        • et al.
        A prospective study of frailty in nephrology-referred patients with CKD.
        Am J Kidney Dis. 2012; 60: 912-921
        • Wilhelm-Leen E.R.
        • Hall Y.N.
        • K Tamura M.
        • Chertow G.M.
        Frailty and chronic kidney disease: The Third National Health and Nutrition Evaluation Survey.
        Am J Med. 2009; 122 (664-671, e662)
        • Shlipak M.G.
        • Stehman-Breen C.
        • Fried L.F.
        • et al.
        The presence of frailty in elderly persons with chronic renal insufficiency.
        Am J Kidney Dis. 2004; 43: 861-867
        • Nickolas T.L.
        • McMahon D.J.
        • Shane E.
        Relationship between moderate to severe kidney disease and hip fracture in the United States.
        J Am Soc Nephrol. 2006; 17: 3223-3232
        • Ensrud K.E.
        • Lui L.Y.
        • Taylor B.C.
        • et al.
        Renal function and risk of hip and vertebral fractures in older women.
        Arch Intern Med. 2007; 167: 133-139
      2. KDOQI Clinical Practice Guidelines and Clinical Practice Recommendations for Diabetes and Chronic Kidney Disease.
        Am J Kidney Dis. 2007; 49: S12-S154
        • Lanham-New S.A.
        Fruit and vegetables: The unexpected natural answer to the question of osteoporosis prevention?.
        Am J Clin Nutr. 2006; 83: 1254-1255
        • Plantinga L.C.
        • Boulware L.E.
        • Coresh J.
        • et al.
        Patient awareness of chronic kidney disease: Trends and predictors.
        Arch Intern Med. 2008; 168: 2268-2275