Advertisement

Dietary Patterns, Calories, and Kidney Disease

  • Holly Kramer
    Correspondence
    Address correspondence to Holly Kramer, MD MPH, Loyola Medical Center, Department of Preventive Medicine and Epidemiology and Medicine, Division of Nephrology and Hypertension, 2160 First Avenue, Maywood, IL 60153.
    Affiliations
    Department of Preventive Medicine and Epidemiology and Medicine, Division of Nephrology and Hypertension, Loyola Medical Center, Maywood, IL
    Search for articles by this author
      Specific nutritional factors that mediate obesity or CKD remain very difficult to quantify in any population. That being said, several macronutrients, including protein intake, have been examined as risk factors for CKD progression. Given the correlation of micro- and macronutrients within a particular diet and the consistency of an individual's dietary habits over time for most individuals, dietary patterns may have a greater impact on CKD risk and progression. This review focuses on dietary patterns and their association with CKD. To date, studies examining dietary patterns and CKD risk remain very limited, and more studies are needed. However, the follow-up period may need to be fairly long to detect any association. Caloric intake itself may also affect CKD risk. This may be due to the influence of caloric intake on sirtuin1, which modulates adiponectin gene expression and nitric oxide bioavailability.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Advances in Chronic Kidney Disease
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Flegal K.M.
        • Carroll M.D.
        • Ogden C.L.
        • Curtin L.R.
        Prevalence and trends in obesity among US adults, 1999-2008.
        JAMA. 2010; 303: 235-241
        • Kramer H.
        • Reboussin D.
        • Bertoni A.G.
        • et al.
        Obesity and albuminuria among adults with type 2 diabetes: the look AHEAD (action for health in diabetes) study.
        Diabetes Care. 2009; 32: 851-853
        • Kawar B.
        • Bello A.K.
        • El Nahas A.M.
        High prevalence of microalbuminuria in the overweight and obese population: data from a UK population screening programme.
        Nephron. 2009; 112: 205-212
        • Chen B.
        • Yang D.
        • Chen Y.
        • Xu W.
        • Ye B.
        • Ni Z.
        The prevalence of microalbuminuria and its relationships with the components of metabolic syndrome in the general population of China.
        Clin Chim Acta. 2010; 411: 705-709
        • Thoenes M.
        • Reil J.C.
        • Khan B.V.
        • et al.
        Abdominal obesity is associated with microalbuminuria and an elevated cardiovascular risk profile in patients with hypertension.
        Vasc Health Risk Manag. 2009; 5: 577-585
        • Hsu C.Y.
        • Iribarren C.
        • McCulloch C.E.
        • Darbinian J.
        • Go A.S.
        Risk factors for end-stage renal disease: 25-year follow-up.
        Arch Intern Med. 2009; 169: 342-350
        • Hsu C.Y.
        • McCulloch C.E.
        • Iribarren C.
        • Darbinian J.
        • Go A.S.
        Body mass index and risk for end-stage renal disease.
        Ann Intern Med. 2006; 144: 21-28
        • Kasiske B.L.
        • Napier J.
        Glomerular sclerosis in patients with massive obesity.
        Am J Nephrol. 1985; 5: 45-50
        • Weisinger J.R.
        • Kempson R.L.
        • Eldridge F.L.
        • Swenson R.S.
        The nephrotic syndrome: a complication of massive obesity.
        Ann Intern Med. 1974; 81: 440-447
        • Kambham N.
        • Markowitz G.S.
        • Valeri A.M.
        • Lin J.
        • D'Agati V.D.
        Obesity-related glomerulopathy: an emerging epidemic.
        Kidney Int. 2001; 59: 1498-1509
        • Ferrari P.
        • Slimani N.
        • Ciampi A.
        • et al.
        Evaluation of under- and overreporting of energy intake in the 24-hour diet recalls in the European Prospective Investigation into Cancer and Nutrition (EPIC).
        Public Health Nutr. 2002; 5: 1329-1345
        • Krishnamurthy V.M.
        • Wei G.
        • Baird B.C.
        • et al.
        High dietary fiber intake is associated with decreased inflammation and all-cause mortality in patients with chronic kidney disease.
        Kidney Int. 2012; 81: 300-306
        • Suckling R.J.
        • He F.J.
        • Macgregor G.A.
        Altered dietary salt intake for preventing and treating diabetic kidney disease.
        Cochrane Database Syst Rev. 2012; 12: CD006763
        • Teschan P.E.
        • Beck G.J.
        • Dwyer J.T.
        • et al.
        Effect of a ketoacid-aminoacid-supplemented very low protein diet on the progression of advanced renal disease: a reanalysis of the MDRD feasibility study.
        Clin Nephrol. 1998; 50: 273-283
        • Miller 3rd, E.R.
        • Juraschek S.P.
        • Appel L.J.
        • et al.
        The effect of n-3 long-chain polyunsaturated fatty acid supplementation on urine protein excretion and kidney function: meta-analysis of clinical trials.
        Am J Clin Nutr. 2009; 89: 1937-1945
        • Swift P.A.
        • Markandu N.D.
        • Sagnella G.A.
        • He F.J.
        • MacGregor G.A.
        Modest salt reduction reduces blood pressure and urine protein excretion in black hypertensives: a randomized control trial.
        Hypertension. 2005; 46: 308-312
        • Fouque D.
        • Wang P.
        • Laville M.
        • Boissel J.P.
        Low protein diets delay end-stage renal disease in non-diabetic adults with chronic renal failure.
        Nephrol Dial Transplant. 2000; 15: 1986-1992
        • Kasiske B.L.
        • Lakatua J.D.
        • Ma J.Z.
        • Louis T.A.
        A meta-analysis of the effects of dietary protein restriction on the rate of decline in renal function.
        Am J Kidney Dis. 1998; 31: 954-961
        • Lin J.
        • Hu F.B.
        • Curhan G.C.
        Associations of diet with albuminuria and kidney function decline.
        Clin J Am Soc Nephrol. 2010; 5: 836-843
        • Nettleton J.A.
        • Steffen L.M.
        • Palmas W.
        • Burke G.L.
        • Jacobs Jr., D.R.
        Associations between microalbuminuria and animal foods, plant foods, and dietary patterns in the multiethnic study of atherosclerosis.
        Am J Clin Nutr. 2008; 87: 1825-1836
        • Lin J.
        • Fung T.T.
        • Hu F.B.
        • Curhan G.C.
        Association of dietary patterns with albuminuria and kidney function decline in older white women: a subgroup analysis from the Nurses' Health Study.
        Am J Kidney Dis. 2011; 57: 245-254
        • Odermatt A.
        The Western-style diet: a major risk factor for impaired kidney function and chronic kidney disease.
        Am J Physiol Renal Physiol. 2011; 301: F919-F931
        • Fung T.T.
        • Rimm E.B.
        • Spiegelman D.
        • et al.
        Association between dietary patterns and plasma biomarkers of obesity and cardiovascular disease risk.
        Am J Clin Nutr. 2001; 73: 61-67
        • Fung T.T.
        • Stampfer M.J.
        • Manson J.E.
        • Rexrode K.M.
        • Willett W.C.
        • Hu F.B.
        Prospective study of major dietary patterns and stroke risk in women.
        Stroke. 2004; 35: 2014-2019
        • Hu F.B.
        • Rimm E.B.
        • Stampfer M.J.
        • Ascherio A.
        • Spiegelman D.
        • Willett W.C.
        Prospective study of major dietary patterns and risk of coronary heart disease in men.
        Am J Clin Nutr. 2000; 72: 912-921
        • Heidemann C.
        • Schulze M.B.
        • Franco O.H.
        • van Dam R.M.
        • Mantzoros C.S.
        • Hu F.B.
        Dietary patterns and risk of mortality from cardiovascular disease, cancer, and all causes in a prospective cohort of women.
        Circulation. 2008; 118: 230-237
        • Appel L.J.
        • Moore T.J.
        • Obarzanek E.
        • et al.
        A clinical trial of the effects of dietary patterns on blood pressure. DASH collaborative research group.
        N Engl J Med. 1997; 336: 1117-1124
        • Shimamoto T.
        • Komachi Y.
        • Inada H.
        • et al.
        Trends for coronary heart disease and stroke and their risk factors in Japan.
        Circulation. 1989; 79: 503-515
        • Buckland G.
        • Agudo A.
        • Travier N.
        • et al.
        Adherence to the Mediterranean diet reduces mortality in the Spanish cohort of the European Prospective Investigation into Cancer and nutrition (EPIC-Spain).
        Br J Nutr. 2011; 106: 1581-1591
        • Trichopoulou A.
        • Kouris-Blazos A.
        • Vassilakou T.
        • et al.
        Diet and survival of elderly Greeks: a link to the past.
        Am J Clin Nutr. 1995; 61: 1346S-1350S
        • McNaughton S.A.
        • Bates C.J.
        • Mishra G.D.
        Diet quality is associated with all-cause mortality in adults aged 65 years and older.
        J Nutr. 2012; 142: 320-325
        • Knoops K.T.
        • de Groot L.C.
        • Kromhout D.
        • et al.
        Mediterranean diet, lifestyle factors, and 10-year mortality in elderly European men and women: the HALE project.
        JAMA. 2004; 292: 1433-1439
        • Ravera M.
        • Re M.
        • Deferrari L.
        • Vettoretti S.
        • Deferrari G.
        Importance of blood pressure control in chronic kidney disease.
        J Am Soc Nephrol. 2006; 17: S98-S103
        • Jacobs Jr., D.R.
        • Gross M.D.
        • Steffen L.
        • et al.
        The effects of dietary patterns on urinary albumin excretion: results of the Dietary Approaches to Stop Hypertension (DASH) trial.
        Am J Kidney Dis. 2009; 53: 638-646
        • Gumprecht L.A.
        • Long C.R.
        • Soper K.A.
        • Smith P.F.
        • Haschek-Hock W.M.
        • Keenan K.P.
        The early effects of dietary restriction on the pathogenesis of chronic renal disease in Sprague-Dawley rats at 12 months.
        Toxicol Pathol. 1993; 21: 528-537
        • Tapp D.C.
        • Wortham W.G.
        • Addison J.F.
        • Hammonds D.N.
        • Barnes J.L.
        • Venkatachalam M.A.
        Food restriction retards body growth and prevents end-stage renal pathology in remnant kidneys of rats regardless of protein intake.
        Lab Invest. 1989; 60: 184-195
        • Gades M.D.
        • Van Goor H.
        • Kaysen G.A.
        • Johnson P.R.
        • Horwitz B.A.
        • Stern J.S.
        Brief periods of hyperphagia cause renal injury in the obese Zucker rat.
        Kidney Int. 1999; 56: 1779-1787
        • Johnson P.R.
        • Stern J.S.
        • Horwitz B.A.
        • Harris Jr., R.E.
        • Greene S.F.
        Longevity in obese and lean male and female rats of the Zucker strain: prevention of hyperphagia.
        Am J Clin Nutr. 1997; 66: 890-903
        • Iseki K.
        • Ikemiya Y.
        • Kinjo K.
        • Inoue T.
        • Iseki C.
        • Takishita S.
        Body mass index and the risk of development of end-stage renal disease in a screened cohort.
        Kidney Int. 2004; 65: 1870-1876
        • Griffin K.A.
        • Kramer H.
        • Bidani A.K.
        Adverse renal consequences of obesity.
        Am J Physiol Renal Physiol. 2008; 294: F685-F696
        • Rennke H.G.
        • Klein P.S.
        Pathogenesis and significance of nonprimary focal and segmental glomerulosclerosis.
        Am J Kidney Dis. 1989; 13: 443-456
        • Weindruch R.
        • Sohal R.S.
        Seminars in medicine of the Beth Israel Deaconess Medical Center. Caloric intake and aging.
        N Engl J Med. 1997; 337: 986-994
        • Weiss E.P.
        • Racette S.B.
        • Villareal D.T.
        • et al.
        Improvements in glucose tolerance and insulin action induced by increasing energy expenditure or decreasing energy intake: a randomized controlled trial.
        Am J Clin Nutr. 2006; 84: 1033-1042
        • Heilbronn L.K.
        • de Jonge L.
        • Frisard M.I.
        • et al.
        Effect of 6-month calorie restriction on biomarkers of longevity, metabolic adaptation, and oxidative stress in overweight individuals: a randomized controlled trial.
        JAMA. 2006; 295: 1539-1548
        • McCay C.M.
        • Crowell M.F.
        • Maynard L.A.
        The effect of retarded growth upon the length of lifespan and upon the ultimate body size.
        J Nutr. 1935; 10: 63-79
        • Stern J.S.
        • Gades M.D.
        • Wheeldon C.M.
        • Borchers A.T.
        Calorie restriction in obesity: prevention of kidney disease in rodents.
        J Nutr. 2001; 131: 913S-917S
        • Reisin E.
        • Azar S.
        • DeBoisblanc B.P.
        • Guzman M.A.
        • Lohmann T.
        Low calorie unrestricted protein diet attenuates renal injury in hypertensive rats.
        Hypertension. 1993; 21: 971-974
        • Kobayashi S.
        • Venkatachalam M.A.
        Differential effects of calorie restriction on glomeruli and tubules of the remnant kidney.
        Kidney Int. 1992; 4: 710-717
        • Afshinnia F.
        • Wilt T.J.
        • Duval S.
        • Esmaeili A.
        • Ibrahim H.N.
        Weight loss and proteinuria: systematic review of clinical trials and comparative cohorts.
        Nephrol Dial Transplant. 2010; 25: 1173-1183
        • Morales E.
        • Valero M.A.
        • Leon M.
        • Hernandez E.
        • Praga M.
        Beneficial effects of weight loss in overweight patients with chronic proteinuric nephropathies.
        Am J Kidney Dis. 2003; 41: 319-327
        • Kramer H.
        • Tuttle K.R.
        • Leehey D.
        • et al.
        Obesity management in adults with CKD.
        Am J Kidney Dis. 2009; 53: 151-165
        • Chagnac A.
        • Weinstein T.
        • Herman M.
        • Hirsh J.
        • Gafter U.
        • Ori Y.
        The effects of weight loss on renal function in patients with severe obesity.
        J Am Soc Nephrol. 2003; 14: 1480-1486
        • Agrawal V.
        • Khan I.
        • Rai B.
        • et al.
        The effect of weight loss after bariatric surgery on albuminuria.
        Clin Nephrol. 2008; 70: 194-202
        • Navarro-Diaz M.
        • Serra A.
        • Romero R.
        • et al.
        Effect of drastic weight loss after bariatric surgery on renal parameters in extremely obese patients: long-term follow-up.
        J Am Soc Nephrol. 2006; 17: S213-S217
        • Zhou X.J.
        • Rakheja D.
        • Yu X.
        • Saxena R.
        • Vaziri N.D.
        • Silva F.G.
        The aging kidney.
        Kidney Int. 2008; 74: 710-720
        • Blum C.A.
        • Ellis J.L.
        • Loh C.
        • Ng P.Y.
        • Perni R.B.
        • Stein R.L.
        SIRT1 modulation as a novel approach to the treatment of diseases of aging.
        J Med Chem. 2011; 54: 417-432
        • Imai S.
        Dissecting systemic control of metabolism and aging in the NAD world: the importance of SIRT1 and NAMPT-mediated NAD biosynthesis.
        FEBS Lett. 2011; 585: 1657-1662
        • He W.
        • Wang Y.
        • Zhang M.Z.
        • et al.
        Sirt1 activation protects the mouse renal medulla from oxidative injury.
        J Clin Invest. 2010; 120: 1056-1068
        • Meydani M.
        • Das S.
        • Band M.
        • Epstein S.
        • Roberts S.
        The effect of caloric restriction and glycemic load on measures of oxidative stress and antioxidants in humans: results from the CALERIE trial of human caloric restriction.
        J Nutr Health Aging. 2011; 15: 456-460
        • Kitada M.
        • Takeda A.
        • Nagai T.
        • Ito H.
        • Kanasaki K.
        • Koya D.
        Dietary restriction ameliorates diabetic nephropathy through anti-inflammatory effects and regulation of the autophagy via restoration of Sirt1 in diabetic Wistar fatty (fa/fa) rats: a model of type 2 diabetes.
        Exp Diabetes Res. 2011; 2011: 908185
        • Qiao L.
        • Shao J.
        SIRT1 regulates adiponectin gene expression through Foxo1-C/enhancer-binding protein alpha transcriptional complex.
        J Biol Chem. 2006; 281: 39915-39924
        • Havel P.J.
        Update on adipocyte hormones: regulation of energy balance and carbohydrate/lipid metabolism.
        Diabetes. 2004; 53: S143-S151
        • Sharma K.
        • Ramachandrarao S.
        • Qiu G.
        • et al.
        Adiponectin regulates albuminuria and podocyte function in mice.
        J Clin Invest. 2008; 118: 1645-1656
        • Ohashi K.
        • Iwatani H.
        • Kihara S.
        • et al.
        Exacerbation of albuminuria and renal fibrosis in subtotal renal ablation model of adiponectin-knockout mice.
        Arterioscler Thromb Vasc Biol. 2007; 27: 1910-1917
        • Mattagajasingh I.
        • Kim C.S.
        • Naqvi A.
        • et al.
        SIRT1 promotes endothelium-dependent vascular relaxation by activating endothelial nitric oxide synthase.
        Proc Natl Acad Sci U S A. 2007; 104: 14855-14860