Advertisement

Microelectromechanical Systems and Nephrology: The Next Frontier in Renal Replacement Technology

  • Steven Kim
    Affiliations
    Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine and Division of Nephrology, Department of Medicine, School of Medicine, University of California, San Francisco, CA and Division of Nephrology, Department of Medicine, School of Medicine, University of California, San Francisco, CA
    Search for articles by this author
  • Shuvo Roy
    Correspondence
    Address correspondence to Shuvo Roy, PhD, Room 203A, QB3/Byers Hall MC 2520, 1700 4th Street, San Francisco, CA 94158.
    Affiliations
    Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine and Division of Nephrology, Department of Medicine, School of Medicine, University of California, San Francisco, CA and Division of Nephrology, Department of Medicine, School of Medicine, University of California, San Francisco, CA
    Search for articles by this author
      Microelectromechanical systems (MEMS) are playing a prominent role in the development of many new and innovative biomedical devices, but they remain a relatively underused technology in nephrology. The future landscape of clinical medicine and research will only see further expansion of MEMS-based technologies in device designs and applications. This enthusiasm stems from the ability to create small-scale device features with high precision in a cost-effective manner. MEMS also offers the possibility to integrate multiple components into a single device. The adoption of MEMS has the potential to revolutionize how nephrologists manage kidney disease by improving the delivery of renal replacement therapies and enhancing the monitoring of physiologic parameters. To introduce nephrologists to MEMS, this review will first define relevant terms and describe the basic processes used to fabricate devices. Next, a survey of MEMS devices being developed for various biomedical applications will be illustrated with current examples. Finally, MEMS technology specific to nephrology will be highlighted and future applications will be examined. The adoption of MEMS offers novel avenues to improve the care of kidney disease patients and assist nephrologists in clinical practice. This review will serve as an introduction for nephrologists to the exciting world of MEMS.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Advances in Chronic Kidney Disease
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

      1. ESRD patients in 2011: A global perspective. Fresenius Medical Care. Global Market Survey, 2011.

        • Roy S.
        • Ferrara L.A.
        • Fleischman A.J.
        • Benzel E.C.
        Microelectromechanical systems and neurosurgery: a new era in a new millennium.
        Neurosurgery. 2001; 49 (discussion 797-8): 779-797
        • Ziaie B.
        • Baldi A.
        • Lei M.
        • Gu Y.
        • Siegel R.A.
        Hard and soft micromachining for BioMEMS: review of techniques and examples of applications in microfluidics and drug delivery.
        Adv Drug Deliv Rev. 2004; 56: 145-172
        • Cima M.J.
        Microsystem technologies for medical applications.
        Annu Rev Chem Biomol Eng. 2011; 2: 355-378
        • Verpoorte E.
        • de Rooij N.F.
        Microfluidics meets MEMS.
        Proc IEEE. 2003; 91: 930-953
        • Grayson A.
        • Shawgo R.
        • Johnson A.
        • et al.
        A BioMEMS review: MEMS technology for physiologically integrated devices.
        Proc IEEE. 2004; 92: 6-21
        • Kovacs G.
        • Maluf N.
        • Petersen K.
        Bulk micromachining of silicon.
        Proc IEEE. 1998; 86: 1536-1551
        • Bean K.
        Anisotropic etching of silicon.
        IEEE Trans Electron Devices. 1978; 25: 1185-1193
        • Lee D.
        Anisotropic etching of silicon.
        J Appl Phys. 1969; 40: 4569-4574
        • Seidel H.
        • Csepregi L.
        • Heuberger A.
        • Baumgartel H.
        Anisotropic etching of crystalline silicon in alkaline-solutions. 1. orientation dependence and behavior of passivation layers.
        J Electrochem Soc. 1990; 137: 3612-3626
        • Schmidt M.
        Wafer-to-wafer bonding for microstructure formation.
        Proc IEEE. 1998; 86: 1575-1585
        • Bustillo J.
        • Howe R.
        • Muller R.
        Surface micromachining for microelectromechanical systems.
        Proc IEEE. 1998; 86: 1552-1574
        • Howe R.
        Surface micromachining for microsensors and microactuators.
        J Vac Sci Technol B. 1988; 6: 1809-1813
        • Fan L.
        • Tai Y.
        • Muller R.
        Integrated movable micromechanical structures for sensors and actuators.
        IEEE Trans Electron Devices. 1988; 35: 724-730
        • Mehregany M.
        • Gabriel K.
        • Trimmer W.
        Integrated fabrication of polysilicon mechanisms.
        IEEE Trans Electron Devices. 1988; 35: 719-723
        • Mehregany M.
        • Yu-Chong Tai
        Surface micromachined mechanisms and micromotors.
        J Micromech Microeng. 1991; 1: 73-85
        • Xia Y.
        • Whitesides G.
        Soft lithography.
        Annu Rev Mater Sci. 1998; 28: 153-184
        • Whitesides G.
        • Ostuni E.
        • Takayama S.
        • Jiang X.
        • Ingber D.
        Soft lithography in biology and biochemistry.
        Annu Rev Biomed Eng. 2001; 3: 335-373
        • Whitesides G.
        • Stroock A.
        Flexible methods for microfluidics.
        Phys Today. 2001; 54: 42-48
        • McDonald J.
        • Duffy D.
        • Anderson J.
        • et al.
        Fabrication of microfluidic systems in poly(dimethylsiloxane).
        Electrophoresis. 2000; 21: 27-40
        • Unger M.A.
        • Chou H.P.
        • Thorsen T.
        • Scherer A.
        • Quake S.R.
        Monolithic microfabricated valves and pumps by multilayer soft lithography.
        Science. 2000; 288: 113-116
        • Duffy D.
        • McDonald J.
        • Schueller O.
        • Whitesides G.
        Rapid prototyping of microfluidic systems in poly(dimethylsiloxane).
        Anal Chem. 1998; 70: 4974-4984
        • Eaton W.
        • Smith J.
        Micromachined pressure sensors: review and recent developments.
        Smart Mater Struct. 1997; 6: 530-539
        • Potkay J.A.
        Long term, implantable blood pressure monitoring systems.
        Biomed Microdevices. 2008; 10: 379-392
        • Pinsky M.R.
        Hemodynamic evaluation and monitoring in the ICU.
        Chest. 2007; 132: 2020-2029
        • Boldt J.
        Clinical review: hemodynamic monitoring in the intensive care unit.
        Crit Care. 2002; 6: 52-59
        • Magalski A.
        • Adamson P.
        • Gadler F.
        • et al.
        Continuous ambulatory right heart pressure measurements with an implantable hemodynamic monitor: a multicenter, 12-month follow-up study of patients with chronic heart failure.
        J Card Fail. 2002; 8: 63-70
        • Steinhaus D.
        • Reynolds D.W.
        • Gadler F.
        • et al.
        Implant experience with an implantable hemodynamic monitor for the management of symptomatic heart failure.
        Pacing Clin Electrophysiol. 2005; 28: 747-753
        • Bourge R.C.
        • Abraham W.T.
        • Adamson P.B.
        • et al.
        Randomized controlled trial of an implantable continuous hemodynamic monitor in patients with advanced heart failure—the COMPASS-HF study.
        J Am Coll Cardiol. 2008; 51: 1073-1079
        • Adamson P.B.
        • Conti J.B.
        • Smith A.L.
        • et al.
        Reducing events in patients with chronic heart failure (REDUCEhf) study design: continuous hemodynamic monitoring with an implantable defibrillator.
        Clin Cardiol. 2007; 30: 567-575
        • Troughton R.W.
        • Ritzema J.
        • Eigler N.L.
        • et al.
        Direct left atrial pressure monitoring in severe heart failure: long-term sensor performance.
        J Cardiovasc Transl Res. 2011; 4: 3-13
        • Ritzema J.
        • Melton I.C.
        • Richards A.M.
        • et al.
        Direct left atrial pressure monitoring in ambulatory heart failure patients—initial experience with a new permanent implantable device.
        Circulation. 2007; 116: 2952-2959
        • Ritzema J.
        • Troughton R.
        • Melton I.
        • et al.
        Physician-directed patient self-management of left atrial pressure in advanced chronic heart failure.
        Circulation. 2010; 121: 1086-1095
        • Hoppe H.
        • Segall J.
        • Liem T.
        • Landry G.
        • Kaufman J.
        Aortic aneurysm sac pressure measurements after endovascular repair using an implantable remote sensor: initial experience and short-term follow-up.
        Eur Radiol. 2008; 18: 957-965
        • Ohki T.
        • Ouriel K.
        • Silveira P.G.
        • et al.
        Initial results of wireless pressure sensing for endovascular aneurysm repair: the APEX trial—Acute Pressure measurement to confirm aneurysm sac EXclusion.
        J Vasc Surg. 2007; 45: 236-242
        • Castro P.F.
        • Concepcion R.
        • Bourge R.C.
        • et al.
        A wireless pressure sensor for monitoring pulmonary artery pressure in advanced heart failure: Initial experience.
        J Heart Lung Transplant. 2007; 26: 85-88
        • Abraham W.T.
        • Adamson P.B.
        • Bourge R.C.
        • et al.
        Wireless pulmonary artery haemodynamic monitoring in chronic heart failure: a randomised controlled trial.
        Lancet. 2011; 377: 658-666
        • Eggers T.
        • Marschner C.
        • Marschner U.
        • Clasbrummel B.
        • Laur R.
        • Binder J.
        Advanced hybrid integrated low-power telemetric pressure monitoring system for biomedical applications.
        in: Proceedings of the IEEE Thirteenth Annual International Conference of Micro Electro Mechanical Systems. IEEE, New Brunswick, NJ2000: 329-334
        • Frischholz M.
        • Sarmento L.
        • Wenzel M.
        • Aquilina K.
        • Edwards R.
        • Coakham H.B.
        Telemetric implantable pressure sensor for short- and long-term monitoring of intracranial pressure.
        Conf Proc IEEE Eng Med Biol Soc. 2007; 2007: 514
        • Simons R.N.
        • Miranda F.A.
        • Wilson J.D.
        • Simons R.E.
        Wearable wireless telemetry system for implantable bio-MEMS sensors. Conference Proceedings.
        Conf Proc IEEE Eng Med Biol Soc. 2006; 1: 6245-6248
        • Simons R.N.
        • Hall D.G.
        • Miranda F.A.
        RF telemetry system for an implantable bio-MEMS sensor.
        in: Microwave Symposium Digest 2004 IEEE MTT-S International. 3. IEEE, New Brunswick, NJ2004: 1433-1436
        • Najafi N.
        • Ludomirsky A.
        Initial animal studies of a wireless, batteryless, MEMS implant for cardiovascular applications.
        Biomed Microdevices. 2004; 6: 61-65
        • Ellozy S.H.
        • Carroccio A.
        • Lookstein R.A.
        • et al.
        First experience in human beings with a permanently implantable intrasac pressure transducer for monitoring endovascular repair of abdominal aortic aneurysms.
        J Vasc Surg. 2004; 40: 405-412
        • Chag M.C.
        • Shah H.A.
        • Naik A.M.
        • et al.
        First-in-man: comparison of impressure device measuring pulmonary artery pressure non-invasively with conventional contrast echocardiography in congestive heart failure.
        Eur Heart J. 2006; 27 (Abstract Number: P1364. 202-202)
        • Parikh K.
        • Naik A.M.
        • Shah H.A.
        • et al.
        First in man non-invasive monitoring of pulmonary artery pressure from an implantable device using acoustic telemetry: a one year follow-up data.
        Eur Heart J. 2006; 27: 202
        • Rozenman Y.
        • Schwartz R.S.
        • Shah H.
        • Parikh K.H.
        Wireless acoustic communication with a miniature pressure sensor in the pulmonary artery for disease surveillance and therapy of patients with congestive heart failure.
        J Am Coll Cardiol. 2007; 49: 784-789
        • Hoppe U.C.
        • Vanderheyden M.
        • Sievert H.
        • et al.
        Chronic monitoring of pulmonary artery pressure in patients with severe heart failure: multicentre experience of the monitoring pulmonary artery pressure by implantable device responding to ultrasonic signal (PAPIRUS) II study.
        Heart. 2009; 95: 1091-1097
        • Lavinio A.
        • Menon D.K.
        Intracranial pressure: why we monitor it, how to monitor it, what to do with the number and what's the future?.
        Curr Opin Anaesthesiol. 2011; 24: 117-123
        • Bhatia A.
        • Gupta A.K.
        Neuromonitoring in the intensive care unit. I. intracranial pressure and cerebral blood flow monitoring.
        Intensive Care Med. 2007; 33: 1263-1271
        • Brain Trauma Foundation
        • American Association of Neurological Surgeons
        • Congress of Neurological Surgeons
        • et al.
        Guidelines for the management of severe traumatic brain injury. VII. intracranial pressure monitoring technology.
        J Neurotrauma. 2007; 24: S45-S54
        • Beier A.
        • Kelkar P.
        • Morgan C.
        • Fessler R.
        Evaluation of a wireless intracranial pressure monitor.
        Am Assoc Neurol Surgeons. 2009; ([Conference presentation.])
        • Kiefer M.
        • Antes S.
        • Leonhardt S.
        • et al.
        Telemetric ICP measurement with the first CE-approved device: Data from animal experiments and initial clinical experiences.
        Acta Neurochir Suppl. 2012; 114: 111-116
        • Orakcioglu B.
        • Beynon C.
        • Kentar M.M.
        • Eymann R.
        • Kiefer M.
        • Sakowitz O.W.
        Intracranial pressure telemetry: first experience of an experimental in vivo study using a new device.
        Acta Neurochir Suppl. 2012; 114: 105-110
        • Welschehold S.
        • Schmalhausen E.
        • Dodier P.
        • et al.
        First clinical results with a new telemetric intracranial pressure-monitoring system.
        Neurosurgery. 2012; 70 (discussion 49): 44-49
        • Ghannad-Rezaie M.
        • Yang L.J.
        • Garton H.J.L.
        • Chronis N.
        A near-infrared optomechanical intracranial pressure microsensor.
        J Microelectromech Syst. 2012; 21: 23-33
        • Leonardi M.
        • Leuenberger P.
        • Bertrand D.
        • Bertsch A.
        • Renaud P.
        First steps toward noninvasive intraocular pressure monitoring with a sensing contact lens.
        Invest Ophthalmol Vis Sci. 2004; 45: 3113-3117
        • Hjortdal J.O.
        • Jensen P.K.
        In-vitro measurement of corneal strain, thickness, and curvature using digital image-processing.
        Acta Ophthalmol Scand. 1995; 73: 5-11
        • Lam A.K.C.
        • Douthwaite W.A.
        The effect of an artificially elevated intraocular pressure on the central corneal curvature.
        Ophthalmic Physiol Opt. 1997; 17: 18-24
        • Leonardi M.
        • Pitchon E.M.
        • Bertsch A.
        • Renaud P.
        • Mermoud A.
        Wireless contact lens sensor for intraocular pressure monitoring: assessment on enucleated pig eyes.
        Acta Ophthalmol. 2009; 87: 433-437
        • Mansouri K.
        • Medeiros F.A.
        • Tafreshi A.
        • Weinreb R.N.
        Continuous 24-hour monitoring of intraocular pressure patterns with a contact lens sensor: safety, tolerability, and reproducibility in patients with glaucoma.
        Arch Ophthalmol. 2012; 130: 1534-1539
        • Mansouri K.
        • Shaarawy T.
        Continuous intraocular pressure monitoring with a wireless ocular telemetry sensor: initial clinical experience in patients with open angle glaucoma.
        Br J Ophthalmol. 2011; 95: 627-629
        • Hoenes J.
        • Mueller P.
        • Surridge N.
        The technology behind glucose meters: test strips.
        Diabetes Technol Ther. 2008; 10: S10-S26
        • Chin C.D.
        • Linder V.
        • Sia S.K.
        Commercialization of microfluidic point-of-care diagnostic devices.
        Lab Chip. 2012; 12: 2118-2134
      2. Alere. Available at: http://www.alere.com/. Accessed April 22, 2013.

      3. Epocal. Available at: http://www.epocal.com/. Accessed April 22, 2013.

      4. Abbott Point of Care. Available at: http://www.abbottpointofcare.com. Accessed April 22, 2013.

        • Erickson K.
        • Wilding P.
        Evaluation of a novel point-of-care system, the I-stat portable clinical analyzer.
        Clin Chem. 1993; 39: 283-287
        • Papadea C.
        • Foster J.
        • Grant S.
        • et al.
        Evaluation of the i-STAT portable clinical analyzer for point-of-care blood testing in the intensive care units of a university children's hospital.
        Ann Clin Lab Sci. 2002; 32: 231-243
        • Gervais L.
        • Delamarche E.
        Toward one-step point-of-care immunodiagnostics using capillary-driven microfluidics and PDMS substrates.
        Lab Chip. 2009; 9: 3330-3337
        • Marcus J.S.
        • Anderson W.F.
        • Quake S.R.
        Microfluidic single-cell mRNA isolation and analysis.
        Anal Chem. 2006; 78: 3084-3089
        • Fan H.C.
        • Gu W.
        • Wang J.
        • Blumenfeld Y.J.
        • El-Sayed Y.Y.
        • Quake S.R.
        Non-invasive prenatal measurement of the fetal genome.
        Nature. 2012; 487: 320-324
        • Liu J.
        • Hansen C.
        • Quake S.
        Solving the “world-to-chip” interface problem with a microfluidic matrix.
        Anal Chem. 2003; 75: 4718-4723
        • Skelley A.M.
        • Scherer J.R.
        • Aubrey A.D.
        • et al.
        Development and evaluation of a microdevice for amino acid biomarker detection and analysis on mars.
        Proc Natl Acad Sci U S A. 2005; 102: 1041-1046
        • Thorsen T.
        • Maerkl S.J.
        • Quake S.R.
        Microfluidic large-scale integration.
        Science. 2002; 298: 580-584
        • Rohde C.B.
        • Zeng F.
        • Gonzalez-Rubio R.
        • Angel M.
        • Yanik M.F.
        Microfluidic system for on-chip high-throughput whole-animal sorting and screening at subcellular resolution.
        Proc Natl Acad Sci U S A. 2007; 104: 13891-13895
        • Melin J.
        • Quake S.R.
        Microfluidic large-scale integration: the evolution of design rules for biological automation.
        Annu Rev Biophys Biomol Struct. 2007; 36: 213-231
        • Araci I.E.
        • Quake S.R.
        Microfluidic very large scale integration (mVLSI) with integrated micromechanical valves.
        Lab Chip. 2012; 12: 2803-2806
        • Olasagasti F.
        Ruiz de Gordoa JC. Miniaturized technology for protein and nucleic acid point-of-care testing.
        Transl Res. 2012; 160: 332-345
        • Fan R.
        • Vermesh O.
        • Srivastava A.
        • et al.
        Integrated barcode chips for rapid, multiplexed analysis of proteins in microliter quantities of blood.
        Nat Biotechnol. 2008; 26: 1373-1378
        • Situma C.
        • Hashimoto M.
        • Soper S.A.
        Merging microfluidics with microarray-based bioassays.
        Biomol Eng. 2006; 23: 213-231
        • Van Damme P.
        • Oosterhuis-Kafeja F.
        • Van der Wielen M.
        • Almagor Y.
        • Sharon O.
        • Levin Y.
        Safety and efficacy of a novel microneedle device for dose sparing intradermal influenza vaccination in healthy adults.
        Vaccine. 2009; 27: 454-459
        • Hung I.F.N.
        • Levin Y.
        • To K.K.W.
        • et al.
        Dose sparing intradermal trivalent influenza (2010/2011) vaccination overcomes reduced immunogenicity of the 2009 H1N1 strain.
        Vaccine. 2012; 30: 6427-6435
        • Griss P.
        • Stemme G.
        Side-opened out-of-plane microneedles for microfluidic transdermal liquid transfer.
        J Microelectromech Syst. 2003; 12: 296-301
        • Roxhed N.
        • Gasser C.
        • Griss P.
        • Holzapfel G.
        • Stemme G.
        Penetration-enhanced ultrasharp microneedles and prediction on skin interaction for efficient transdermal drug delivery.
        J Microelectromech Syst. 2007; 16: 1429-1440
        • McAllister D.V.
        • Wang P.M.
        • Davis S.P.
        • et al.
        Microfabricated needles for transdermal delivery of macromolecules and nanoparticles: fabrication methods and transport studies.
        Proc Natl Acad Sci U S A. 2003; 100: 13755-13760
        • Davis S.
        • Martanto W.
        • Allen M.
        • Prausnitz M.
        Hollow metal microneedles for insulin delivery to diabetic rats.
        IEEE Trans Biomed Eng. 2005; 52: 909-915
        • Amirouche F.
        • Zhou Y.
        • Johnson T.
        Current micropump technologies and their biomedical applications.
        Microsystem Tech. 2009; 15: 647-666
        • Maillefer D.
        • van Lintel H.
        • Rey-Mermet G.
        • Hirschi R.
        A high-performance silicon micropump for an implantable drug delivery system.
        in: Mechanical Systems 1999 MEMS '99 Twelfth IEEE International Conference. IEEE, New Brunswick, NJ1999: 541-546
        • Maillefer D.
        • Gamper S.
        • Frehner B.
        • Balmer P.
        • van Lintel H.
        • Renaud P.
        A high-performance silicon micropump for disposable drug delivery systems.
        in: MicroElectro Mech Syst 2001 MEMS 2001 14th IEEE International Conference. IEEE, New Brunswick, NJ2001: 413-417
      5. Debiotech S.A. Available at: http://www.debiotech.com/. Accessed March 20, 2013.

        • Li P.
        • Shih J.
        • Lo R.
        • et al.
        An electrochemical intraocular drug delivery device.
        Sens Actuators A. 2008; 143: 41-48
        • Maloney J.
        • Uhland S.
        • Polito B.
        • Sheppard N.
        • Pelta C.
        • Santini J.
        Electrothermally activated microchips for implantable drug delivery and biosensing.
        J Controlled Release. 2005; 109: 244-255
        • Prescott J.H.
        • Krieger T.J.
        • Lipka S.
        • Staples M.A.
        Dosage form development, in vitro release kinetics, and in vitro-in vivo correlation for leuprolide released from an implantable multi-reservoir array.
        Pharm Res. 2007; 24: 1252-1261
        • Prescott J.
        • Lipka S.
        • Baldwin S.
        • et al.
        Chronic, programmed polypeptide delivery from an implanted, multireservoir microchip device.
        Nat Biotechnol. 2006; 24: 437-438
        • Proos E.R.
        • Prescott J.H.
        • Staples M.A.
        Long-term stability and in vitro release of hPTH(1-34) from a multi-reservoir array.
        Pharm Res. 2008; 25: 1387-1395
        • Farra R.
        • Sheppard Jr., N.F.
        • McCabe L.
        • et al.
        First-in-human testing of a wirelessly controlled drug delivery microchip.
        Sci Transl Med. 2012; 4: 122ra21
        • Gardner P.
        Use of a nanopore membrane in novel a drug delivery device.
        Future Drug Deliv. 2006; : 59-60
        • Martin F.
        • Walczak R.
        • Boiarski A.
        • et al.
        Tailoring width of microfabricated nanochannels to solute size can be used to control diffusion kinetics.
        J Controlled Release. 2005; 102: 123-133
        • Lesinski G.
        • Sharma S.
        • Varker K.
        • Sinha P.
        • Ferrari M.
        • Carson W.
        Release of biologically functional interferon-alpha from a nanochannel delivery system.
        Biomed Microdevices. 2005; 7: 71-79
        • Vaidya V.S.
        • Ferguson M.A.
        • Bonventre J.V.
        Biomarkers of acute kidney injury.
        Annu Rev Pharmacol Toxicol. 2008; 48: 463-493
        • Shephard M.D.
        Point-of-care testing and creatinine measurement.
        Clin Biochem Rev. 2011; 32: 109-114
        • Louie R.
        • Tang Z.
        • Shelby D.
        • Kost G.
        Point-of-care testing: millennium technology for critical care.
        Lab Med. 2000; 31: 402-408
        • Allon M.
        Current management of vascular access.
        Clin J Am Soc Nephrol. 2007; 2: 786-800
        • Cheong J.H.
        • Ng S.S.Y.
        • Liu X.
        • et al.
        An inductively powered implantable blood flow sensor microsystem for vascular grafts.
        IEEE Trans Biomed Eng. 2012; 59: 2466-2475
        • Sant W.
        • Temple-Boyer P.
        • Chanie E.
        • Launay J.
        • Martinez A.
        On-line monitoring of urea using enzymatic field effect transistors.
        Sens Actuator B. 2011; 160: 59-64
        • Davenport A.
        • Gura V.
        • Ronco C.
        • Beizai M.
        • Ezon C.
        • Rambod E.
        A wearable haemodialysis device for patients with end-stage renal failure: a pilot study.
        Lancet. 2007; 370: 2005-2010
        • Gura V.
        • Ronco C.
        • Nalesso F.
        • et al.
        A wearable hemofilter for continuous ambulatory ultrafiltration.
        Kidney Int. 2008; 73: 497-502
        • Gura V.
        • Beizai M.
        • Ezon C.
        • Polaschegg H.
        Continuous renal replacement therapy for end-stage renal disease—the wearable artificial kidney (WAK).
        Contrib Nephrol. 2005; 149: 325-333
        • Gura V.
        • Macy A.S.
        • Beizai M.
        • Ezon C.
        • Golper T.A.
        Technical breakthroughs in the wearable artificial kidney (WAK).
        Clin J Am Soc Nephrol. 2009; 4: 1441-1448
        • Gura V.
        • Davenport A.
        • Beizai M.
        • Ezon C.
        • Ronco C.
        Beta(2)-microglobulin and phosphate clearances using a wearable artificial kidney: A pilot study.
        Am J Kidney Dis. 2009; 54: 104
      6. AWAK technologies. Available at: http://www.awak.com. Accessed May 20, 2013.

        • Lee D.B.
        • Roberts M.
        A peritoneal-based automated wearable artificial kidney.
        Clin Exp Nephrol. 2008; 12: 171-180
        • Leonard E.F.
        Technical approaches toward ambulatory ESRD therapy.
        Semin Dial. 2009; 22: 658-660
        • Leonard E.
        • Cortell S.
        • Vitale N.
        Membraneless dialysis—is it possible?.
        Contrib Nephrol. 2005; 149: 343-353
      7. Home Dialysis Plus. Available at: http://www.homedialysisplus.com/. Accessed May 20, 2013.

        • Paul B.
        Micro energy and chemical systems (MECS) and multiscale fabrication.
        Micromanufacturing Nanotechnol. 2006; : 299-355
      8. HP licenses technology to home dialysis plus for development of portable home dialysis machine. Available at: http://www.hp.com/hpinfo/newsroom/press/2008/081016a.html. Accessed May 20, 2013.

      9. Borenstein J, Weinberg E, Orrick B, et al, inventors; The Charles Stark Draper Laboratory (Cambridge, MA) Massachusetts Institute of Technology (Cambridge, MA) The General Hospital Corporation (Boston, MA), assignee. Micromachined bilayer unit filtration small molecules. Patent 7,776,021. August 17, 2010.

        • Roy S.
        • Dubnisheva A.
        • Eldridge A.
        • et al.
        Silicon nanopore membrane technology for an implantable artificial kidney.
        in: Solid-State Sensors, Actuators and Microsystems Conference, 2009 Transducers 2009. International. IEEE, New Brunswick, NJ2009
        • Roy S.
        • Goldman K.
        • Marchant R.
        • et al.
        Implanted renal replacement for end-stage renal disease.
        Panminerva Med. 2011; 53: 155-166
        • Fissell W.H.
        • Dubnisheva A.
        • Eldridge A.N.
        • Fleischman A.J.
        • Zydney A.L.
        • Roy S.
        High-performance silicon nanopore hemofiltration membranes.
        J Memb Sci. 2009; 326: 58-63
        • Conlisk A.T.
        • Datta S.
        • Fissell W.H.
        • Roy S.
        Biomolecular transport through hemofiltration membranes.
        Ann Biomed Eng. 2009; 37: 722-736
        • Fissell W.H.
        • Roy S.
        The implantable artificial kidney.
        Semin Dial. 2009; 22: 665-670
        • Fissell W.H.
        • Fleischman A.J.
        • Humes H.D.
        • Roy S.
        Development of continuous implantable renal replacement: past and future.
        Transl Res. 2007; 150: 327-336
        • Kanani D.M.
        • Fissell W.H.
        • Roy S.
        • Dubnisheva A.
        • Fleischman A.
        • Zydney A.L.
        Permeability-selectivity analysis for ultrafiltration: effect of pore geometry.
        J Memb Sci. 2010; 349: 405
      10. Fissell W, Ferrell N, Groszek J, Conlisk A, Kanani D, Zydney A. Enhanced B2-microglobulin clearance by silicone nanopore membranes. ASN 46th Ren Week. 2010:F-PO1078. [Conference presentation.]