Advertisement

Gadolinium Retention and Toxicity—An Update

  • Miguel Ramalho
    Affiliations
    Department of Radiology, Hospital Garcia de Orta, Almada, Portugal; Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC; and Department of Radiology, Centro Hospitalar de Lisboa Central, Lisbon, Portugal
    Search for articles by this author
  • Joana Ramalho
    Affiliations
    Department of Radiology, Hospital Garcia de Orta, Almada, Portugal; Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC; and Department of Radiology, Centro Hospitalar de Lisboa Central, Lisbon, Portugal
    Search for articles by this author
  • Lauren M. Burke
    Affiliations
    Department of Radiology, Hospital Garcia de Orta, Almada, Portugal; Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC; and Department of Radiology, Centro Hospitalar de Lisboa Central, Lisbon, Portugal
    Search for articles by this author
  • Richard C. Semelka
    Correspondence
    Address correspondence to Richard C. Semelka, MD, Department of Radiology, University of North Carolina at Chapel Hill, CB 7510—2001 Old Clinic Building, Chapel Hill, NC 27599-7510.
    Affiliations
    Department of Radiology, Hospital Garcia de Orta, Almada, Portugal; Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC; and Department of Radiology, Centro Hospitalar de Lisboa Central, Lisbon, Portugal
    Search for articles by this author
      Until 2006, the main considerations regarding safety for all gadolinium-based contrast agents (GBCAs) were related to short-term adverse reactions. However, the administration of certain “high-risk” GBCAs to patients with renal failure resulted in multiple reported cases of nephrogenic systemic fibrosis. Findings have been reported regarding gadolinium deposition within the body and various reports of patients who report suffering from acute and chronic symptoms secondary to GBCA's exposure. At the present state of knowledge, it has been proved that gadolinium deposits also occur in the brain, irrespective of renal function and GBCAs stability class. To date, no definitive clinical findings are associated with gadolinium deposition in brain tissue. Gadolinium deposition disease is a newly described and probably infrequent entity. Patients presenting with gadolinium deposition disease may show signs and symptoms that somewhat follows a pattern similar but not identical, and also less severe, to those observed in nephrogenic systemic fibrosis. In this review, we will address gadolinium toxicity focusing on these 2 recently described concerns.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Advances in Chronic Kidney Disease
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Weinmann H.J.
        • Brasch R.C.
        • Press W.R.
        • Wesbey G.E.
        Characteristics of gadolinium-DTPA complex: a potential NMR contrast agent.
        AJR Am J Roentgenol. 1984; 142: 619-624
      1. ACR Manual on Contrast Media. Version 10.2. ACR Committee on Drugs and Contrast Media, 2015 (Available at: https://www.acr.org/∼/media/ACR/Documents/PDF/QualitySafety/Resources/Contrast-Manual/2016_Contrast_Media.pdf. Accessed November 19, 2016)
        • Murphy K.J.
        • Brunberg J.A.
        • Cohan R.H.
        Adverse reactions to gadolinium contrast media: a review of 36 cases.
        AJR Am J Roentgenol. 1996; 167: 847-849
        • Runge V.M.
        Safety of approved MR contrast media for intravenous injection.
        J Magn Reson Imaging. 2000; 12: 205-213
        • Runge V.M.
        Safety of magnetic resonance contrast media.
        Top Magn Reson Imaging. 2001; 12: 309-314
        • Jung J.-W.
        • Kang H.-R.
        • Kim M.-H.
        • et al.
        Immediate hypersensitivity reaction to gadolinium-based MR contrast media.
        Radiology. 2012; 264: 414-422
        • Kanal E.
        • Maravilla K.
        • Rowley H.A.
        Gadolinium contrast agents for CNS imaging: current concepts and clinical evidence.
        AJNR Am J Neuroradiol. 2014; 35: 2215-2226
        • Cowper S.E.
        • Robin H.S.
        • Steinberg S.M.
        • Su L.D.
        • Gupta S.
        • LeBoit P.E.
        Scleromyxoedema-like cutaneous diseases in renal-dialysis patients.
        Lancet. 2000; 356: 1000-1001
        • Grobner T.
        Gadolinium—a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis?.
        Nephrol Dial Transplant. 2005; 21: 1104-1108
        • Marckmann P.
        Nephrogenic systemic fibrosis: suspected causative role of gadodiamide used for contrast-enhanced magnetic resonance imaging.
        J Am Soc Nephrol. 2006; 17: 2359-2362
        • Besheli L.D.
        • Aran S.
        • Shaqdan K.
        • Kay J.
        • Abujudeh H.
        Current status of nephrogenic systemic fibrosis.
        Clin Radiol. 2014; 69: 661-668
        • Kanal E.
        Gadolinium based contrast agents (GBCA): safety overview after 3 decades of clinical experience.
        Magn Reson Imaging. 2016; 34: 1341-1345
        • Gibby W.A.
        • Gibby K.A.
        • Gibby W.A.
        Comparison of Gd DTPA-BMA (Omniscan) versus Gd HP-DO3A (ProHance) retention in human bone tissue by inductively coupled plasma atomic emission spectroscopy.
        Invest Radiol. 2004; 39: 138-142
        • White G.W.
        • Gibby W.A.
        • Tweedle M.F.
        Comparison of Gd(DTPA-BMA) (Omniscan) versus Gd(HP-DO3A) (ProHance) relative to gadolinium retention in human bone tissue by inductively coupled plasma mass spectroscopy.
        Invest Radiol. 2006; 41: 272-278
        • Darrah T.H.
        • Prutsman-Pfeiffer J.J.
        • Poreda R.J.
        • Ellen Campbell M.
        • Hauschka P.V.
        • Hannigan R.E.
        Incorporation of excess gadolinium into human bone from medical contrast agents.
        Metallomics. 2009; 1: 479-488
      2. US Food and Drug Administration. FDA evaluating the risk of brain deposits with repeated use of gadolinium-based contrast agents for magnetic resonance imaging (MRI). Safety Announcement. Available at: http://www.fda.gov/downloads/Drugs/DrugSafety/UCM455390. Accessed November 19, 2016.

      3. European Medicines Agency. PRAC concludes assessment of gadolinium agents used in body scans and recommends regulatory actions, including suspension for some marketing authorisations. Available at: http://www.ema.europa.eu/docs/en_GB/document_library/Press_release/2017/03/WC500223209.pdf. Accessed March 26, 2017.

        • European Society of Urogenital Radiology (ESUR)
        ESUR Guidelines on Contrast Media Version 9.0.
        ESUR Head Office, Vienna2014: 16-18
        • Kanda T.
        • Oba H.
        • Toyoda K.
        • Kitajima K.
        • Furui S.
        Brain gadolinium deposition after administration of gadolinium-based contrast agents.
        Jpn J Radiol Springer Jpn. 2016; 34: 3-9
        • Burke L.M.B.
        • Ramalho M.
        • AlObaidy M.
        • Chang E.
        • Jay M.
        • Semelka R.C.
        Self-reported gadolinium toxicity: a survey of patients with chronic symptoms.
        Magn Reson Imaging. 2016; 34: 1078-1080
        • Semelka R.C.
        • Ramalho J.
        • Vakharia A.
        • et al.
        Gadolinium deposition disease: initial description of a disease that has been around for a while.
        Magn Reson Imaging. 2016; 34: 1383-1390
        • Semelka R.C.
        • Commander C.W.
        • Jay M.
        • Burke L.M.B.
        • Ramalho M.
        Presumed gadolinium toxicity in subjects with normal renal function: a report of 4 cases.
        Invest Radiol. 2016; 51: 661-665
        • Frenzel T.
        • Lengsfeld P.
        • Schirmer H.
        • Hütter J.
        Stability of gadolinium-based magnetic resonance imaging contrast agents in human serum at 37°C.
        Invest Radiol. 2008; 43: 817-828
        • Huckle J.E.
        • Altun E.
        • Jay M.
        • Semelka R.C.
        Gadolinium deposition in humans: when did we learn that gadolinium was deposited in vivo?.
        Invest Radiol. 2016; 51: 236-240
        • Prybylski J.P.
        • Maxwell E.
        • Coste-Sanchez C.
        • Jay M.
        Gadolinium deposition in the brain: lessons learned from other metals known to cross the blood-brain barrier.
        Magn Reson Imaging. 2016; 34: 1366-1372
        • Welk B.
        • McArthur E.
        • Morrow S.A.
        • MacDonald P.
        Association between gadolinium contrast exposure and the risk of parkinsonism.
        JAMA. 2016; 316: 96-98
        • Kanda T.
        • Ishii K.
        • Kawaguchi H.
        • Kitajima K.
        • Takenaka D.
        High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: relationship with increasing cumulative dose of a gadolinium-based contrast material.
        Radiology. 2014; 270: 834-841
        • Quattrocchi C.C.
        • Mallio C.A.
        • Errante Y.
        • et al.
        Gadodiamide and dentate nucleus T1 hyperintensity in patients with meningioma evaluated by multiple follow-up contrast-enhanced magnetic resonance examinations with no systemic interval therapy.
        Invest Radiol. 2015; 50: 470-472
        • Errante Y.
        • Cirimele V.
        • Mallio C.A.
        • Di Lazzaro V.
        • Zobel B.B.
        • Quattrocchi C.C.
        Progressive increase of T1 signal intensity of the dentate nucleus on unenhanced magnetic resonance images is associated with cumulative doses of intravenously administered gadodiamide in patients with normal renal function, suggesting dechelation.
        Invest Radiol. 2014; 49: 685-690
        • Kanda T.
        • Osawa M.
        • Oba H.
        • Toyoda K.
        • et al.
        High signal intensity in dentate nucleus on unenhanced T1-weighted MR images: association with linear versus macrocyclic gadolinium chelate administration.
        Radiology. 2015; 275: 803-809
        • Radbruch A.
        • Weberling L.D.
        • Kieslich P.J.
        • et al.
        Gadolinium retention in the dentate nucleus and globus pallidus is dependent on the class of contrast agent.
        Radiology. 2015; 275: 783-791
        • Ramalho J.
        • Castillo M.
        • AlObaidy M.
        • et al.
        High signal intensity in globus pallidus and dentate nucleus on unenhanced T1-weighted MR images: evaluation of two linear gadolinium-based contrast agents.
        Radiology. 2015; 276: 836-844
        • Stojanov D.A.
        • Aracki-Trenkic A.
        • Vojinovic S.
        • Benedeto-Stojanov D.
        • Ljubisavljevic S.
        Increasing signal intensity within the dentate nucleus and globus pallidus on unenhanced T1W magnetic resonance images in patients with relapsing-remitting multiple sclerosis: correlation with cumulative dose of a macrocyclic gadolinium-based contrast agent, gadobutrol.
        Eur Radiol. 2016; 26: 807-815
        • Weberling L.D.
        • Kieslich P.J.
        • Kickingereder P.
        • et al.
        Increased signal intensity in the dentate nucleus on unenhanced T1-weighted images after gadobenate dimeglumine administration.
        Invest Radiol. 2015; 50: 743-748
        • Cao Y.
        • Huang D.Q.
        • Shih G.
        • Prince M.R.
        Signal change in the dentate nucleus on T1-weighted MR images after multiple administrations of gadopentetate dimeglumine versus gadobutrol.
        AJR Am J Roentgenol. 2016; 206: 414-419
        • McDonald R.J.
        • McDonald J.S.
        • Kallmes D.F.
        • et al.
        Intracranial gadolinium deposition after contrast-enhanced MR imaging.
        Radiology. 2015; 275: 772-782
        • Kanda T.
        • Fukusato T.
        • Matsuda M.
        • et al.
        Gadolinium-based contrast agent accumulates in the brain even in subjects without severe renal dysfunction: evaluation of autopsy brain specimens with inductively coupled plasma mass spectroscopy.
        Radiology. 2015; 276: 228-232
        • Murata N.
        • Murata K.
        • Gonzalez-Cuyar L.F.
        • Maravilla K.R.
        Gadolinium tissue deposition in brain and bone.
        Magn Reson Imaging. 2016; 34: 1359-1365
        • Kuno H.
        • Jara H.
        • Buch K.
        • Qureshi M.M.
        • Chapman M.N.
        • Sakai O.
        Global and regional brain assessment with quantitative MR imaging in patients with prior exposure to linear gadolinium-based contrast agents.
        Radiology. 2017; 283: 195-204
        • Miller J.H.
        • Hu H.H.
        • Pokorney A.
        • Cornejo P.
        • Towbin R.
        MRI brain signal intensity changes of a child during the course of 35 gadolinium contrast examinations.
        Pediatrics. 2015; 136: e1637-e1640
        • Roberts D.R.
        • Holden K.R.
        Progressive increase of T1 signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images in the pediatric brain exposed to multiple doses of gadolinium contrast.
        Brain Dev. 2016; 38: 331-336
        • Hu H.H.
        • Pokorney A.
        • Towbin R.B.
        • Miller J.H.
        Increased signal intensities in the dentate nucleus and globus pallidus on unenhanced T1-weighted images: evidence in children undergoing multiple gadolinium MRI exams.
        Pediatr Radiol. 2016; 46: 1590-1598
        • Flood T.F.
        • Stence N.V.
        • Maloney J.A.
        • Mirsky D.M.
        Pediatric brain: repeated exposure to linear gadolinium-based contrast material is associated with increased signal intensity at unenhanced T1-weighted MR imaging.
        Radiology. 2017; 282: 222-228
        • Roberts D.R.
        • Lindhorst S.M.
        • Welsh C.T.
        • et al.
        High levels of gadolinium deposition in the skin of a patient with normal renal function.
        Invest Radiol. 2016; 51: 280-289
        • Maximova N.
        • Gregori M.
        • Zennaro F.
        • Sonzogni A.
        • Simeone R.
        • Zanon D.
        Hepatic gadolinium deposition and reversibility after contrast agent–enhanced MR imaging of pediatric hematopoietic stem cell transplant recipients.
        Radiology. 2016; 281: 418-426
        • Kanda T.
        • Nakai Y.
        • Oba H.
        • Toyoda K.
        • Kitajima K.
        • Furui S.
        Gadolinium deposition in the brain.
        Magn Reson Imaging. 2016; 34: 1346-1350
        • Kanal E.
        • Tweedle M.F.
        Residual or retained gadolinium: practical implications for radiologists and our patients.
        Radiology. 2015; 275: 630-634
        • Tedeschi E.
        • Palma G.
        • Canna A.
        • et al.
        In vivo dentate nucleus MRI relaxometry correlates with previous administration of Gadolinium-based contrast agents.
        Eur Radiol. 2016; 26: 4577-4584
        • Eisele P.
        • Alonso A.
        • Szabo K.
        • et al.
        Lack of increased signal intensity in the dentate nucleus after repeated administration of a macrocyclic contrast agent in multiple sclerosis.
        Medicine (Baltimore). 2016; 95: e4624
        • Yamada M.
        • Asano T.
        • Okamoto K.
        • et al.
        High frequency of calcification in basal ganglia on brain computed tomography images in Japanese older adults.
        Geriatr Gerontol Int. 2013; 13: 706-710
        • Valdés Hernández Mdel C.
        • Maconick L.C.
        • Tan E.M.J.
        • Wardlaw J.M.
        Identification of mineral deposits in the brain on radiological images: a systematic review.
        Eur Radiol. 2012; 22: 2371-2381
        • Bressler J.P.
        • Olivi L.
        • Cheong J.H.
        • Kim Y.
        • Maerten A.
        • Bannon D.
        Metal transporters in intestine and brain: their involvement in metal-associated neurotoxicities.
        Hum Exp Toxicol. 2007; 26: 221-229
        • Fasano M.
        • Curry S.
        • Terreno E.
        • et al.
        The extraordinary ligand binding properties of human serum albumin.
        IUBMB Life. 2005; 57: 787-796
        • Aime S.
        • Caravan P.
        Biodistribution of gadolinium-based contrast agents, including gadolinium deposition.
        J Magn Reson Imaging. 2009; 30: 1259-1267
        • Cavagna F.M.
        • Maggioni F.
        • Castelli P.M.
        • et al.
        Gadolinium chelates with weak binding to serum proteins. A new class of high-efficiency, general purpose contrast agents for magnetic resonance imaging.
        Invest Radiol. 1997; 32: 780-796
        • Triguero D.
        • Buciak J.
        • Pardridge W.M.
        Capillary depletion method for quantification of blood-brain barrier transport of circulating peptides and plasma proteins.
        J Neurochem. 1990; 54: 1882-1888
        • Yokel R.A.
        Brain uptake, retention, and efflux of aluminum and manganese.
        Environ Health Perspect. 2002; 110: 699-704
        • Radunović A.
        • Delves H.T.
        • Bradbury M.W.
        Uptake of aluminum and gallium into tissues of the rat: influence of antibody against the transferrin receptor.
        Biol Trace Elem Res. 1998; 62: 51-64
        • Allen D.D.
        • Yokel R.A.
        Dissimilar aluminum and gallium permeation of the blood-brain barrier demonstrated by in vivo microdialysis.
        J Neurochem. 1992; 58: 903-908
        • Öner A.Y.
        • Barutcu B.
        • Aykol Ş.
        • Tali E.T.
        Intrathecal contrast-enhanced magnetic resonance imaging–related brain signal changes.
        Invest Radiol. 2017; 52: 195-197
        • Iliff J.J.
        • Wang M.
        • Liao Y.
        • et al.
        A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β.
        Sci Transl Med. 2012; 4: 147ra111
        • Iliff J.J.
        • Lee H.
        • Yu M.
        • et al.
        Brain-wide pathway for waste clearance captured by contrast-enhanced MRI.
        J Clin Invest. 2013; 123: 1299-1309
        • Brown P.D.
        • Davies S.L.
        • Speake T.
        • Millar I.D.
        Molecular mechanisms of cerebrospinal fluid production.
        Neuroscience. 2004; 129: 957-970
        • Praetorius J.
        Water and solute secretion by the choroid plexus.
        Pflugers Arch. 2007; 454: 1-18
        • Yang L.
        • Kress B.T.
        • Weber H.J.
        • et al.
        Evaluating glymphatic pathway function utilizing clinically relevant intrathecal infusion of CSF tracer.
        J Transl Med. 2013; 11: 107
        • Eide P.K.
        • Ringstad G.
        MRI with intrathecal MRI gadolinium contrast medium administration: a possible method to assess glymphatic function in human brain.
        Acta Radiol Open. 2015; 4 (2058460115609635–9)
        • Naganawa S.
        • Nakane T.
        • Kawai H.
        • Taoka T.
        Gd-based contrast enhancement of the perivascular spaces in the basal ganglia.
        Magn Reson Med Sci. 2017; 16: 61-65
        • Robert P.
        • Lehericy S.
        • Grand S.
        • Violas X.
        T1-weighted hypersignal in the deep cerebellar nuclei after repeated administrations of gadolinium-based contrast agents in healthy rats: difference between linear and macrocyclic agents.
        Invest Radiol. 2015; 50: 481-482
        • Ramalho J.
        • Semelka R.C.
        • AlObaidy M.
        • Ramalho M.
        • Nunes R.H.
        • Castillo M.
        Signal intensity change on unenhanced T1-weighted images in dentate nucleus following gadobenate dimeglumine in patients with and without previous multiple administrations of gadodiamide.
        Eur Radiol. 2016; 26: 4080-4088
        • Radbruch A.
        • Weberling L.D.
        • Kieslich P.J.
        • et al.
        Intraindividual analysis of signal intensity changes in the dentate nucleus after consecutive serial applications of linear and macrocyclic gadolinium-based contrast agents.
        Invest Radiol. 2016; 51: 683-690
        • Smith A.P.L.
        • Marino M.
        • Roberts J.
        • et al.
        Clearance of gadolinium from the brain with no pathologic effect after repeated administration of gadodiamide in healthy rats: an analytical and histologic study.
        Radiology. 2017; 282: 743-751
        • Bauer K.
        • Lathrum A.
        • Raslan O.
        • et al.
        Do gadolinium-based contrast agents affect the 18F-FDG PET/CT uptake in the dentate nucleus and the globus pallidus? A pilot study.
        J Nucl Med Technol. 2017; 45: 30-33
        • Cowper S.E.
        • Bucala R.
        • Leboit P.E.
        Nephrogenic fibrosing dermopathy/nephrogenic systemic fibrosis—setting the record straight.
        Semin Arthritis Rheum. 2006; 35: 208-210
        • Rogosnitzky M.
        • Branch S.
        Gadolinium-based contrast agent toxicity: a review of known and proposed mechanisms.
        Biometals. 2016; 29: 365-376
        • Akgun H.
        • Gonlusen G.
        • Cartwright J.
        • Suki W.N.
        • Truong L.D.
        Are gadolinium-based contrast media nephrotoxic? A renal biopsy study.
        Arch Pathol. 2006; 130: 1354-1357
        • Blasco-Perrin H.
        • Glaser B.
        • Pienkowski M.
        • Peron J.M.
        • Payen J.L.
        Gadolinium induced recurrent acute pancreatitis.
        Pancreatology. 2013; 13: 88-89
        • Erenoğlu C.
        • Uluutku A.H.
        • Top C.
        • Akın M.L.
        Do MRI agents cause or worsen acute pancreatitis?.
        Ulus Travma Acil Cerrahi Derg. 2007; 13: 78-79
        • Maramattom B.V.
        • Manno E.M.
        • Wijdicks E.F.M.
        • Lindell E.P.
        Gadolinium encephalopathy in a patient with renal failure.
        Neurology. 2005; 64: 1276-1278
        • Hui F.K.
        • Mullins M.
        Persistence of gadolinium contrast enhancement in CSF: a possible harbinger of gadolinium neurotoxicity?.
        AJNR Am J Neuroradiol. 2009; 30: E1
        • Cowper S.E.
        Nephrogenic systemic fibrosis: a review and exploration of the role of gadolinium.
        Adv Dermatol. 2007; 23: 131-154
        • Ray J.G.
        • Vermeulen M.J.
        • Bharatha A.
        • Montanera W.J.
        • Park A.L.
        Association between MRI exposure during pregnancy and fetal and childhood outcomes.
        JAMA. 2016; 316: 952-961
        • Gathings R.M.
        • Reddy R.
        • Santa Cruz D.
        • Brodell R.T.
        Gadolinium-associated plaques.
        JAMA Dermatol. 2015; 151: 316-319
        • Sieber M.A.
        • Lengsfeld P.
        • Frenzel T.
        • et al.
        Preclinical investigation to compare different gadolinium-based contrast agents regarding their propensity to release gadolinium in vivo and to trigger nephrogenic systemic fibrosis-like lesions.
        Eur Radiol. 2008; 18: 2164-2173
        • Ramalho J.
        • Ramalho M.
        • Jay M.
        • Burke L.
        • Semelka R.C.
        Gadolinium toxicity and treatment.
        Magn Reson Imaging. 2016; 34: 1394-1398
        • Wermuth P.J.
        • Jimenez S.A.
        Induction of a type I interferon signature in normal human monocytes by gadolinium-based contrast agents: comparison of linear and macrocyclic agents.
        Clin Exp Immunol. 2013; 175: 113-125
        • Smith S.W.
        The role of chelation in the treatment of other metal poisonings.
        J Med Toxicol. 2013; 9: 355-369
        • Wesolowski J.R.
        • Kaiser A.
        Alternatives to GBCA: are we there yet?.
        Top Magn Reson Imaging. 2016; 25: 171-175
        • Semelka R.C.
        • Armao D.M.
        • Elias Jr., J.
        • Huda W.
        Imaging strategies to reduce the risk of radiation in CT studies, including selective substitution with MRI.
        J Magn Reson Imaging. 2007; 25: 900-909