Adverse Effects of the Metabolic Acidosis of Chronic Kidney Disease

  • Jeffrey A. Kraut
    Medical and Research Services VHAGLA Healthcare System, UCLA Membrane Biology Laboratory and Division of Nephrology VHAGLA Healthcare System and David Geffen School of Medicine, Los Angeles, CA; and Division of Nephrology, Department of Medicine, St. Elizabeth's Medical Center and Department of Medicine, Tufts University School of Medicine, Boston, MA
    Search for articles by this author
  • Nicolaos E. Madias
    Address correspondence to Nicolaos E. Madias, MD, Division of Nephrology, St. Elizabeth's Medical Center, 736 Cambridge Street, Boston, MA 02135.
    Medical and Research Services VHAGLA Healthcare System, UCLA Membrane Biology Laboratory and Division of Nephrology VHAGLA Healthcare System and David Geffen School of Medicine, Los Angeles, CA; and Division of Nephrology, Department of Medicine, St. Elizabeth's Medical Center and Department of Medicine, Tufts University School of Medicine, Boston, MA
    Search for articles by this author
      The kidney has the principal role in the maintenance of acid-base balance, and therefore, a fall in renal net acid excretion and positive H+ balance often leading to reduced serum [HCO3] are observed in the course of CKD. This metabolic acidosis can be associated with muscle wasting, development or exacerbation of bone disease, hypoalbuminemia, increased inflammation, progression of CKD, protein malnutrition, alterations in insulin, leptin, and growth hormone, and increased mortality. Importantly, some of the adverse effects can be observed even in the absence of overt hypobicarbonatemia. Administration of base decreases muscle wasting, improves bone disease, restores responsiveness to insulin, slows progression of CKD, and possibly reduces mortality. Base is recommended when serum [HCO3] is <22 mEq/L, but the target serum [HCO3] remains unclear. Evidence that increments of serum [HCO3] >26 mEq/L might be associated with worsening of cardiovascular disease adds complexity to treatment decisions. Further study of the mechanisms through which positive H+ balance in CKD contributes to its various adverse effects and the pathways involved in mediating the benefits and complications of base therapy is warranted.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Advances in Chronic Kidney Disease
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Kraut J.A.
        • Madias N.E.
        Metabolic acidosis of CKD: an update.
        Am J Kidney Dis. 2016; 67: 307-317
        • Wesson D.E.
        • Simoni J.
        • Broglio K.
        • Sheather S.J.
        Acid retention accompanies reduced GFR in humans and increases plasma levels of aldosterone and endothelin.
        Am J Physiol. 2011; 300: F830-F837
        • Lemann J.
        • Bushinsky D.A.
        • Hamm L.L.
        Bone buffering of acid and base in humans.
        Am J Physiol. 2003; 285: F811-F832
        • Raj S.
        • Scott D.R.
        • Nguyen T.
        • Sachs G.
        • Kraut J.A.
        Acid stress increases gene expression of proinflammatory cytokines in Madin-Darby canine kidney cells.
        Am J Physiol Ren Physiol. 2013; 304: F41-F48
        • Fahal I.H.
        Uraemic sarcopenia: aetiology and implications.
        Nephrol Dial Transplant. 2014; 29: 1655-1665
        • Souza V.A.
        • Oliveira D.
        • Mansur H.N.
        • Fernandes N.M.
        • Bastos M.G.
        Sarcopenia in chronic kidney disease.
        J Bras Nefrol. 2015; 37: 98-105
        • Foley R.N.
        • Wang C.
        • Ishani A.
        • Collins A.J.
        • Murray A.M.
        Kidney function and sarcopenia in the United States general population: NHANES III.
        Am J Nephrol. 2007; 27: 279-286
        • Pickering W.P.
        • Price S.R.
        • Bircher G.
        • Marinovic A.C.
        • Mitch W.E.
        • Walls J.
        Nutrition in CAPD: serum bicarbonate and the ubiquitin-proteasome system in muscle.
        Kidney Int. 2002; 61: 1286-1292
        • Workeneh B.T.
        • Mitch W.E.
        Review of muscle wasting associated with chronic kidney disease.
        Am J Clin Nutr. 2010; 91: 1128S-1132S
        • Abramowitz M.K.
        • Hostetter T.H.
        • Melamed M.L.
        Association of serum bicarbonate levels with gait speed and quadriceps strength in older adults.
        Am J Kidney Dis. 2011; 58: 29-38
        • Abramowitz M.K.
        • Hostetter T.H.
        • Melamed M.L.
        Lower serum bicarbonate and a higher anion gap are associated with lower cardiorespiratory fitness in young adults.
        Kidney Int. 2012; 81: 1033-1042
        • de Brito-Ashurst I.
        • Varagunam M.
        • Raftery M.J.
        • Yaqoob M.M.
        Bicarbonate supplementation slows progression of CKD and improves nutritional status.
        J Am Soc Nephrol. 2009; 20: 2075-2084
        • Stein A.
        • Moorhouse J.
        • Iles Smith H.
        • et al.
        Role of improvement in acid-base status and nutrition in CAPD patients.
        Kidney Int. 1997; 52: 1089-1095
        • Verove C.
        • Maisonneuve N.
        • El Azouzi A.
        • Boldron A.
        • Azar R.
        Effect of the correction of metabolic acidosis on nutritional status in elderly patients with chronic renal failure.
        J Ren Nutr. 2002; 12: 224-228
        • Abramowitz M.K.
        Acid-base balance and physical function.
        Clin J Am Soc Nephrol. 2014; 9: 2030-2032
        • May R.C.
        • Kelly R.A.
        • Mitch W.E.
        Metabolic acidosis stimulates protein degradation in rat muscle by a glucocorticoid dependent mechanism.
        J Clin Invest. 1986; 77: 614-621
        • Mitch W.E.
        • Medina R.
        • Grieber S.
        • et al.
        Metabolic-acidosis stimulates muscle protein-degradation by activating the adenosine triphosphate-dependent pathway involving ubiquitin and proteasomes.
        J Clin Invest. 1994; 93: 2127-2133
        • Caso G.
        • Garlick B.A.
        • Casella G.A.
        • Sasvary D.
        • Garlick P.J.
        Acute metabolic acidosis inhibits muscle protein synthesis in rats.
        Am J Physiol Endocrinol Metab. 2004; 287: E90-E96
        • Mitch W.E.
        • Goldberg A.L.
        Mechanisms of disease—mechanisms of muscle wasting—the role of the ubiquitin-proteasome pathway.
        N Engl J Med. 1996; 335: 1897-1905
        • Wang X.H.
        • Mitch W.E.
        Mechanisms of muscle wasting in chronic kidney disease.
        Nat Rev Nephrol. 2014; 10: 504-516
        • Hamm L.L.
        • Ambuhl P.M.
        • Alpern R.J.
        Role of glucocorticoids in acidosis.
        Am J Kidney Dis. 1999; 34: 960-965
        • Esche J.
        • Shi L.
        • Sanchez-Guijo A.
        • Hartmann M.F.
        • Wudy S.A.
        • Remer T.
        Higher diet-dependent renal acid load associates with higher glucocorticoid secretion and potentially bioactive free glucocorticoids in healthy children.
        Kidney Int. 2016; 90: 325-333
        • Ori Y.
        • Zingerman B.
        • Bergman M.
        • Bessler H.
        • Salman H.
        The effect of sodium bicarbonate on cytokine secretion in CKD patients with metabolic acidosis.
        Biomed Pharmacother. 2015; 71: 98-101
        • Wesson D.E.
        • Simoni J.
        Acid retention during kidney failure induces endothelin and aldosterone production which lead to progressive GFR decline, a situation ameliorated by alkali diet.
        Kidney Int. 2010; 78: 1128-1135
        • Wesson D.E.
        • Simoni J.
        Increased tissue acid mediates a progressive decline in the glomerular filtration rate of animals with reduced nephron mass.
        Kidney Int. 2009; 75: 929-935
        • Bailey J.L.
        • England B.K.
        • Long R.C.
        • Weissman J.
        • Mitch W.E.
        Experimental acidemia and muscle-cell Ph in chronic acidosis and renal-failure.
        Am J Physiology-Cell Physiol. 1995; 38: C706-C712
        • Frasetto L.
        • Morris R.C.
        • Sebastian A.
        Potassium bicarbonate reduces urinary nitrogen excretion in postmenopausal women.
        J Clin Endocrinol Metab. 1997; 82: 254-259
        • Ballmer P.E.
        • McNurlan M.A.
        • Hulter H.N.
        • Anderson S.E.
        • Garlick P.J.
        • Krapf R.
        Chronic metabolic acidosis decreases albumin synthesis and induces negative nitrogen balance in humans.
        J Clin Invest. 1995; 95: 39-45
        • Kleger G.R.
        • Turgay M.
        • Imoberdorf R.
        • McNurlan M.A.
        • Garlick P.J.
        • Ballmer P.E.
        Acute metabolic acidosis decreases muscle protein synthesis but not albumin synthesis in humans.
        Am J Kidney Dis. 2001; 38: 1199-1207
        • Eustace J.A.
        • Astor B.
        • Muntner P.M.
        • Ikizler T.A.
        • Coresh J.
        Prevalence of acidosis and inflammation and their association with low serum albumin in chronic kidney disease.
        Kidney Int. 2004; 65: 1031-1040
        • Kraut J.A.
        Disturbances of acid-base balance and bone disease in end-stage renal disease.
        Sem Dial. 2000; 13: 261-265
        • Kraut J.A.
        • Coburn J.
        Bone, acid, and osteoporosis.
        N Engl J Med. 1994; 330: 1821-1822
        • Mac W.F.
        • Lessard M.
        • Lafage-Proust M.H.
        Pathophysiology of chronic kidney disease-mineral and bone disorder.
        Joint Bone Spine. 2012; 79: 544-549
        • Barzel U.S.
        • Jowsey J.
        The effect of chronic acid and alkali administration on bone turnover in adult rats.
        Clin Sci. 1969; 36: 517-524
        • Wrong O.
        • Henderson J.E.
        • Kaye M.
        Distal renal tubular acidosis: alkali heals osteomalacia and increases net production of 1,25-dihydroxyvitamin D.
        Nephron Physiol. 2005; 101: 72-76
        • Coen G.
        • Mazzaferro S.
        • Ballanti P.
        Renal bone disease in 76 patients with varying degrees of predialysis chronic renal failure:a cross sectional study.
        Nephrol Dial Transpl. 1996; 11: 813-819
        • Kato A.
        • Kido R.
        • Onishi Y.
        • et al.
        Association of serum bicarbonate with bone fractures in hemodialysis patients: the mineral and bone disorder outcomes study for Japanese CKD stage 5D patients (MBD-5D).
        Nephron Clin Pract. 2014; 128: 79-87
        • Lefebvre A.
        • DeVernejoul M.C.
        • Gueris J.
        • Goldfarb B.
        • Graulet A.M.M.C.
        Optimal correction of acidosis changes progression of dialysis osteodystrophy.
        Kidney Int. 1989; 36: 1112-1118
        • Wesson D.E.
        • Pruszynski J.
        • Cai W.
        • Simoni J.
        Acid retention with reduced glomerular filtration rate increases urine biomarkers of kidney and bone injury.
        Kidney Int. 2017; 91: 914-927
        • Sebastian A.
        • Harris S.T.
        • Ottaway J.H.
        • Todd K.M.
        • Morris Jr., R.C.
        Improved mineral balance and skeletal metabolism in postmenopausal women treated with potassium bicarbonate.
        N Engl J Med. 1994; 330: 1776-1781
        • Kraut J.A.
        • Mishler D.R.
        • Singer F.R.
        • Goodman W.G.
        The effects of metabolic acidosis on bone formation and bone resorption in the rat.
        Kidney Int. 1986; 30: 694-700
        • Bushinsky D.A.
        Nephrology forum: the contribution of acidosis to renal osteodystrophy.
        Kidney Int. 1999; 47: 1816-1832
        • Krieger N.S.
        • Yao Z.
        • Kyker-Snowman K.
        • Kim M.H.
        • Boyce B.F.
        • Bushinsky D.A.
        Increased bone density in mice lacking the proton receptor OGR1.
        Kidney Int. 2016; 89: 565-573
        • Reni C.
        • Mangialardi G.
        • Meloni M.
        • Madeddu P.
        Diabetes stimulates osteoclastogenesis by acidosis-induced activation of transient receptor potential cation channels.
        Sci Rep. 2016; 6: 30639
        • Hulter H.N.
        Effects and Interrelationships of PTH, Ca-2+, vitamin-D, and pi in acid-base homeostasis.
        Am J Physiol. 1985; 248: F739-F752
        • Krapf R.
        • Vetsch R.
        • Vetsch W.
        • Hulter H.N.
        Chronic metabolic-acidosis increases the serum concentration of 1,25-dihydroxyvitamin-D in humans by stimulating its production-rate - critical role of acidosis-induced renal hypophosphatemia.
        JCI. 1992; 90: 2456-2463
        • Chen W.
        • Melamed M.L.
        • Hostetter T.H.
        • et al.
        Effect of oral sodium bicarbonate on fibroblast growth factor-23 in patients with chronic kidney disease: a pilot study.
        BMC Nephrol. 2016; 17: 114
        • Krieger N.S.
        • Culbertson C.D.
        • Kyker-Snowman K.
        • Bushinsky D.A.
        Metabolic acidosis increases fibroblast growth factor 23 in neonatal mouse bone.
        Am J Physiol Ren Physiol. 2012; 303: F431-F436
        • Sharma A.P.
        • Sharma R.K.
        • Kapoor R.
        • Kornecki A.
        • Sural S.
        • Filler G.
        Incomplete distal renal tubular acidosis affects growth in children.
        Nephrol Dial Transpl. 2007; 22: 2879-2885
        • McSherry E.
        • Morris R.C.
        Attainment and maintenance of normal stature with alkali therapy in infants and children with classic renal tubular acidosis.
        J Clin Invest. 1978; 61: 509-527
        • Bacchetta J.
        • Harambat J.
        • Cochat P.
        • Salusky I.B.
        • Wesseling-Perry K.
        The consequences of chronic kidney disease on bone metabolism and growth in children.
        Nephrol Dial Transpl. 2012; 27: 3063-3071
        • Nath K.A.
        • Hostetter M.K.
        • Hostetter T.H.
        Increased ammoniagenesis as a determinant of progressive renal injury.
        Am J Kidney Dis. 1991; 17: 654-657
        • Phisitkul S.
        • Hacker C.
        • Simoni J.
        • Tran R.M.
        • Wesson D.E.
        Dietary protein causes a decline in the glomerular filtration rate of the remnant kidney mediated by metabolic acidosis and endothelin receptors.
        Kidney Int. 2008; 73: 192-199
        • Mahajan A.
        • Simoni J.
        • Sheather S.J.
        • Broglio K.R.
        • Rajab M.H.
        • Wesson D.E.
        Daily oral sodium bicarbonate preserves glomerular filtration rate by slowing its decline in early hypertensive nephropathy.
        Kidney Int. 2010; 78: 303-309
        • Shah S.N.
        • Abramowitz M.
        • Hostetter T.H.
        • Melamed M.L.
        Serum bicarbonate levels and the progression of kidney disease: a cohort study.
        Am J Kidney Dis. 2009; 54: 270-277
        • Dobre M.
        • Yang W.
        • Pan Q.
        • et al.
        Persistent high serum bicarbonate and the risk of heart failure in patients with chronic kidney disease (CKD): a report from the Chronic Renal Insufficiency Cohort (CRIC) study.
        J Am Heart Assoc. 2015; 4: 1-10
        • Kovesdy C.P.
        • Anderson J.E.
        • Kalantar-Zadeh K.
        Association of serum bicarbonate levels with mortality in patients with non-dialysis-dependent CKD.
        Nephrol Dial Transpl. 2009; 24: 1232-1237
        • Raphael K.L.
        • Wei G.
        • Baird B.C.
        • Greene T.
        • Beddhu S.
        Higher serum bicarbonate levels within the normal range are associated with better survival and renal outcomes in African Americans.
        Kidney Int. 2011; 79: 356-362
        • Driver T.H.
        • Shlipak M.G.
        • Katz R.
        • et al.
        Low serum bicarbonate and kidney function decline: the Multi-Ethnic Study of Atherosclerosis (MESA).
        Am J Kidney Dis. 2014; 64: 534-541
        • Goldenstein L.
        • Driver T.H.
        • Fried L.F.
        • et al.
        Serum bicarbonate concentrations and kidney disease progression in community-living elders: the Health, Aging, and Body Composition (Health ABC) Study.
        Am J Kidney Dis. 2014; 64: 542-549
        • Vallet M.
        • Metzger M.
        • Haymann J.P.
        • et al.
        Urinary ammonia and long-term outcomes in chronic kidney disease.
        Kidney Int. 2015; 88: 137-145
        • Rebholz C.M.
        • Coresh J.
        • Grams M.E.
        • et al.
        Dietary acid load and incident chronic kidney disease: results from the ARIC study.
        Am J Nephrol. 2015; 42: 427-435
        • Goraya N.
        • Wesson D.E.
        Dietary interventions to improve outcomes in chronic kidney disease.
        Curr Opin Nephrol Hypertens. 2015; 24: 505-510
        • Goraya N.
        • Wesson D.E.
        Does correction of metabolic acidosis slow chronic kidney disease progression?.
        Curr Opin Nephrol Hypertens. 2013; 22: 193-197
        • Goraya N.
        • Simoni J.
        • Jo C.
        • Wesson D.E.
        Dietary acid reduction with fruits and vegetables or bicarbonate attenuates kidney injury in patients with a moderately reduced glomerular filtration rate due to hypertensive nephropathy.
        Kidney Int. 2012; 81: 86-93
        • Phisitkul S.
        • Khanna A.
        • Simoni A.
        • Broglio K.
        • Rajab M.H.
        • Wesson D.E.
        Amelioration of metabolic acidosis in patients with low GFR reduced kidney endothelin production and kidney injury, and better preserved GFR.
        Kidney Int. 2010; 77: 617-623
        • Wesson D.E.
        • Nathan T.
        • Rose T.
        • Simoni J.
        • Tran R.M.
        Dietary protein induces endothelin-mediated kidney injury through enhanced intrinsic acid production.
        Kidney Int. 2007; 71: 210-217
        • Goraya N.
        • Simoni J.
        • Jo C.H.
        • Wesson D.E.
        Treatment of metabolic acidosis in patients with stage 3 chronic kidney disease with fruits and vegetables or oral bicarbonate reduces urine angiotensinogen and preserves glomerular filtration rate.
        Kidney Int. 2014; 86: 1031-1038
        • Kraut J.A.
        Effect of metabolic acidosis on progression of chronic kidney disease.
        Am J Physiol. 2011; 300: F828-F829
        • Sun X.M.
        • Yang L.V.
        • Tiegs B.C.
        • et al.
        Deletion of the pH sensor GPR4 decreases renal acid excretion.
        J Am Soc Nephrol. 2010; 21: 1745-1755
        • Defronzo R.A.
        • Beckles A.D.
        Glucose intolerance following chronic metabolic acidosis in man.
        Am J Physiol. 1979; 236: E328-E334
        • Whittaker J.
        • Cuthbert C.
        • Hammond V.A.
        • Alberti K.G.
        The Effects of Metabolic acidosis in vivo on insulin binding to isolated rat adipocytes.
        Metabolism. 1982; 31: 553-557
        • Garibotto G.
        • Sofia A.
        • Russo R.
        • et al.
        Insulin sensitivity of muscle protein metabolism is altered in patients with chronic kidney disease and metabolic acidosis.
        Kidney Int. 2015; 88: 1419-1426
        • Kobayashi S.
        • Maesato K.
        • Moriya H.
        • Ohtake T.
        • Ikeda T.
        Insulin resistance in patients with chronic kidney disease.
        Am J Kidney Dis. 2005; 45: 275-280
        • Khairallah P.
        • Scialla J.J.
        Role of acid-base homeostasis in diabetic kidney disease.
        Curr Diab Rep. 2017; 17: 28
        • Bellasi A.
        • Di M.L.
        • Santoro D.
        • et al.
        Correction of metabolic acidosis improves insulin resistance in chronic kidney disease.
        BMC Nephrol. 2016; 17: 158
        • Mak R.H.K.
        Effect of metabolic acidosis on insulin action and secretion in uremia.
        Kidney Int. 1998; 54: 603-607
        • Sonikian M.
        • Gogusev J.
        • Zingraff J.
        • et al.
        Potential effect of metabolic acidosis on beta2-microglobulin generation: in vivo and in vitro studies.
        J Am Soc Nephrol. 1996; 7: 350-356
        • Raikou V.D.
        • Tentolouris N.
        • Kyriaki D.
        • Evaggelatou A.
        • Tzanatou H.
        Beta2-microglobulin, pulse pressure and metabolic alterations in hemodialysis patients.
        Nephron Clin Pract. 2011; 117: c237-c245
        • Krupp D.
        • Shi L.
        • Remer T.
        Longitudinal relationships between diet-dependent renal acid load and blood pressure development in healthy children.
        Kidney Int. 2014; 85: 204-210
        • Engberink M.F.
        • Bakker S.J.
        • Brink E.J.
        • et al.
        Dietary acid load and risk of hypertension: the Rotterdam Study.
        Am J Clin Nutr. 2012; 95: 1438-1444
        • Gennari F.J.
        • Hood V.L.
        • Greene T.
        • Wang X.
        • Levey A.S.
        Effect of dietary protein intake on serum total CO2 concentration in chronic kidney disease: Modification of Diet in Renal Disease study findings.
        Clin J Am Soc Nephrol. 2006; 1: 52-57
        • Gaggl M.
        • Sliber C.
        • Sunder-Plassmann G.
        Effect of oral alkali supplementation on progression of chronic kidney disease.
        Curr Hypertens Rev. 2014; 10: 112-120
        • Sun X.
        • Tommasi E.
        • Molina D.
        • et al.
        Deletion of proton-sensing receptor GPR4 associates with lower blood pressure and lower binding of angiotensin II receptor in SFO.
        Am J Physiol Ren Physiol. 2016; 311: F1260-F1266
        • Jandziszak K.
        • Suarez C.
        • Wasserman E.
        • et al.
        Disturbances of growth hormone-insulin-like growth factor axis and response to growth hormone in acidosis.
        Am J Physiol. 1998; 275: R120-R128
        • Brungger M.
        • Hulter H.N.
        • Krapf R.
        Effect of chronic metabolic acidosis on the growth hormone IGF-1 endocrine axis: new cause of growth hormone insensitivity in humans.
        Kidney Int. 1997; 51: 216-221
        • Wiederkehr M.R.
        • Kalogiros J.
        • Krapf R.
        Correction of metabolic acidosis improves thyroid and growth hormone axes in haemodialysis patients.
        Nephrol Dial Transpl. 2004; 19: 1190-1197
        • Bales A.M.
        • Moyses R.M.
        • dos Reis L.M.
        • et al.
        Correction of metabolic acidosis in hemodialysis: consequences on serum leptin and mineral metabolism.
        Int Urol Nephrol. 2015; 47: 177-182
        • Mak R.H.
        • Cheung W.
        Energy homeostasis and cachexia in chronic kidney disease.
        Pediatr Nephrol. 2006; 21: 1807-1814
        • Teta D.
        • Bevington A.
        • Brown J.
        • Throssell D.
        • Harris K.P.G.
        • Walls J.
        Effects of acidosis on leptin secretion from 3T3-LI adipocytes and on serum leptin in the uraemic rat.
        Clin Sci. 1999; 97: 363-368
        • Zheng F.
        • Qiu X.X.
        • Yin S.Y.
        • Li Y.
        Changes in serum leptin levels in chronic renal failure patients with metabolic acidosis.
        J Ren Nutr. 2001; 11: 207-211
        • Kalantar-Zadeh K.
        • Mehrotra R.
        • Fouque D.
        • Kopple J.D.
        Metabolic acidosis and malnutrition-inflammation complex syndrome in chronic renal failure.
        Semin Dial. 2004; 17: 455-465
        • Brungger M.
        • Hulter H.N.
        • Krapf R.
        Effect of chronic metabolic acidosis on thyroid hormone homeostasis in humans.
        Am J Physiol. 1997; 272: F648-F653
        • Lim V.S.
        • Fang V.S.
        • Katz A.I.
        • Refetoff S.
        Thyroid dysfunction in chronic rena failure.
        J Clin Invest. 1977; 60: 522-534
        • Wiederkehr M.R.
        • Krapf R.
        Metabolic and endocrine effects of metabolic acidosis in humans.
        Swiss Med Weekly. 2001; 131: 127-132
        • Kellum J.A.
        • Song M.
        • Li J.
        Lactic and hydrochloric acids induce different patterns of inflammatory response in LPS-stimulated RAW 264.7 cells.
        Am J Physiol Regul Integr Comp Physiol. 2004; 286: R686-R692
        • Farwell W.R.
        • Taylor E.N.
        Serum anion gap, bicarbonate and biomarkers of inflammation in healthy individuals in a national survey.
        CMAJ. 2010; 182: 137-141
        • Martinez D.
        • Vermeulen M.
        • von E.E.
        • et al.
        Extracellular acidosis triggers the maturation of human dendritic cells and the production of IL-12.
        J Immunol. 2007; 179: 1950-1959
        • Emeis M.
        • Sonntag J.
        • Willam C.
        • Strauss E.
        • Walka M.M.
        • Obladen M.
        Acidosis activates complement system in vitro.
        Mediators Inflamm. 1998; 7: 417-420
        • Gupta J.
        • Mitra N.
        • Kanetsky P.A.
        • et al.
        Association between albuminuria, kidney function, and inflammatory biomarker profile in CKD in CRIC.
        Clin J Am Soc Nephrol. 2012; 7: 1938-1946
        • Ori Y.
        • Bergman M.
        • Bessler H.
        • et al.
        Cytokine secretion and markers of inflammation in relation to acidosis among chronic hemodialysis patients.
        Blood Purif. 2013; 35: 181-186
        • Akchurin O.M.
        • Kaskel F.
        Update on inflammation in chronic kidney disease.
        Blood Purif. 2015; 39: 84-92
        • Raphael K.L.
        • Zhang Y.
        • Wei G.
        • Greene T.
        • Cheung A.K.
        • Beddhu S.
        Serum bicarbonate and mortality in adults in NHANES III.
        Nephrol Dial Transplant. 2013; 28: 1207-1213
        • Navaneethan S.D.
        • Schold J.D.
        • Arrigain S.
        • et al.
        Serum bicarbonate and mortality in stage 3 and stage 4 chronic kidney disease.
        Clin J Am Soc Nephrol. 2011; 6: 2395-2402
        • Raphael K.L.
        • Murphy R.A.
        • Shlipak M.G.
        • et al.
        Bicarbonate concentration, acid-base status, and mortality in the Health, Aging, and Body Composition Study.
        Clin J Am Soc Nephrol. 2016; 11: 308-316
        • Vashistha T.
        • Kalantar-Zadeh K.
        • Molnar M.Z.
        • Torlen K.
        • Mehrotra R.
        Dialysis modality and correction of uremic metabolic acidosis: relationship with all-cause and cause-specific mortality.
        Clin J Am Soc Nephrol. 2013; 8: 254-264
        • Chang T.I.
        • Oh H.J.
        • Kang E.W.
        • et al.
        A low serum bicarbonate concentration as a risk factor for mortality in peritoneal dialysis patients.
        PLoS One. 2013; 8: e82912
        • Caravaca F.
        • Alvarado R.
        • Garcia-Pino G.
        • Martinez-Gallardo R.
        • Luna E.
        During the pre-dialysis stage of chronic kidney disease, which treatment is associated with better survival in dialysis?.
        Nefrologia. 2014; 34: 469-476
        • Yenigun E.C.
        • Aypak C.
        • Turgut D.
        • Aydin M.Z.
        • Dede F.
        Effect of metabolic acidosis on QT intervals in patients with chronic kidney disease.
        Int J Artif Organs. 2016; 39: 272-276
        • Obi Y.
        • Qader H.
        • Kovesdy C.P.
        • Kalantar-Zadeh K.
        Latest consensus and update on protein-energy wasting in chronic kidney disease.
        Curr Opin Clin Nutr Metab Care. 2015; 18: 254-262
        • Kraut J.A.
        • Madias N.E.
        Lactic acidosis: current treatments and future directions.
        Am J Kidney Dis. 2016; 68: 473-482