Dietary Magnesium and Chronic Disease

      Although official magnesium (Mg) dietary reference intakes are open to question, a significant number of adults likely have intakes that are in the range of 50%-99% of the requirement. This moderate or marginal (subclinical) deficient Mg intake generally is asymptomatic. Animal studies, however, indicate that moderate or subclinical Mg deficiency primes phagocytic cells for the release of proinflammatory cytokines leading to chronic inflammatory and oxidative stress. Human studies have found that dietary Mg is inversely related to serum or plasma C-reactive protein (CRP). Individuals with apparently deficient Mg intakes have an increased likelihood of serum or plasma CRP ≥3.0 mg/L, considered an indicator of chronic inflammatory stress that increases the risk for chronic disease. In addition, elevated serum or plasma CRP in individuals with chronic disease is decreased by Mg supplementation, which suggests that Mg decreases the risk for chronic disease. The importance of dietary Mg intake on the risk for chronic disease through affecting inflammatory and oxidative stress is supported by numerous meta-analyses and systematic reviews that have found dietary Mg is inversely associated with chronic diseases such hypertension, ischemic heart disease, stroke, metabolic syndrome, diabetes, and colorectal cancer.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Advances in Chronic Kidney Disease
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Jahnen-Dechent W.
        • Ketteler M.
        Magnesium basics.
        Clin Kidney J. 2012; 5: i3-i14
        • Vormann J.
        Magnesium: nutrition and homeostasis.
        AIMS Public Health. 2016; 3: 329-340
        • Nielsen F.H.
        • Johnson L.K.
        Data from controlled metabolic ward studies provide guidance for the determination of status indicators and dietary requirements for magnesium.
        Biol Trace Elem Res. 2017; 177: 43-52
        • Costello R.B.
        • Elin R.J.
        • Rosanoff A.
        • et al.
        Perspective: the case for an evidence-based reference interval for serum magnesium: the time has come.
        Adv Nutr. 2016; 7: 977-993
        • Food and Nutrition Board
        • Institute of Medicine
        in: Dietary Reference Intakes for Calcium, Phosphorus, Magnesium, Vitamin D, and Fluoride. National Academies Press, Washington, DC1997: 190-249
        • Hunt C.D.
        • Johnson L.K.
        Magnesium requirements: new estimations for men and women by cross-sectional statistical analysis of metabolic magnesium balance data.
        Am J Clin Nutr. 2006; 84: 843-852
        • Nielsen F.H.
        Guidance for the determination of status indicators and dietary requirements for magnesium.
        Magnes Res. 2016; 29: 154-160
        • European Food Safety Authority
        Scientific opinion on dietary reference values for magnesium.
        EFSA J. 2015; 13: 4186
        • Shay C.M.
        • Van Horn L.
        • Stamler J.
        • et al.
        Food and nutrient intakes and their association with lower BMI in middle-aged US adults: the International Study of Macro-/Micronutrients and Blood Pressure (INTEMAP).
        Am J Clin Nutr. 2012; 96: 483-491
        • Guerro-Romero F.
        • Rodriguez-Moran M.F.
        Serum magnesium in the metabolically-obese normal weight and healthy-obese subjects.
        Eur J Intern Med. 2013; 24: 639-643
        • Nielsen F.H.
        Magnesium, inflammation, and obesity in chronic disease.
        Nutr Rev. 2012; 68: 333-343
        • Volpe S.L.
        in: Erdman J.W. Macdonald I.A. Zeisel S.H. Resent Knowledge in Nutrition. 10th ed. Wiley, Ames, IA2012: 459-474
        • Dibaba D.T.
        • Xun P.
        • He K.
        Dietary magnesium intake is inversely associated with serum C-reactive protein levels: meta-analysis and systematic review.
        Eur J Clin Nutr. 2014; 68: 510-516
        • Del Gobbo L.C.
        • Inamura F.
        • Wu J.H.Y.
        • de Oliveira Otto M.C.
        • Chiuve S.E.
        • Mozaffarian D.
        Circulating and dietary magnesium and risk of cardiovascular disease: a systematic review and meta-analysis of prospective studies.
        Am J Clin Nutr. 2013; 98: 160-173
        • Qu X.
        • Jin F.
        • Hao Y.
        • et al.
        Magnesium and the risk of cardiovascular events: a meta-analysis of prospective cohort studies.
        PLoS One. 2013; 8: e57720
        • Xu T.
        • Sun Y.
        • Xu T.
        • Zhang Y.
        Magnesium intake and cardiovascular disease mortality: a meta-analysis of prospective cohort studies.
        Int J Cardiol. 2013; 167: 3044-3047
        • Fang X.
        • Liang C.
        • Li M.
        • et al.
        Dose –response relationship between dietary magnesium and cardiovascular mortality: a systemic review and dose-based meta-regression analysis of prospective studies.
        J Trace Elem Med Biol. 2016; 38: 64-73
        • Han H.
        • Fang X.
        • Wei X.
        • et al.
        Dose-response relationship between dietary magnesium intake, serum magnesium concentration, and risk of hypertension: a systemic review and meta-analysis of prospective cohort studies.
        Nutr J. 2017; 16: 26
        • He K.
        • Liu D.
        • Dqviglus M.L.
        • et al.
        Magnesium intake and incidence of metabolic syndrome among young adults.
        Circulation. 2006; 113: 1675-1682
        • Ju S.Y.
        • Choi W.S.
        • Ock S.M.
        • Kim C.M.
        • Kim D.H.
        Dietary magnesium intake and metabolic syndrome in the adult population: dose-response meta-analysis and meta-regression.
        Nutrients. 2014; 6: 6005-6019
        • Moshfegh A.
        • Goldman J.
        • Ahuja J.
        • Rhodes D.
        • LaComb R.
        What We Eat in America. NHANES 2005-2006: Usual Nutrient Intakes from Food and Water Compared to 1997 Dietary Reference Intakes for Vitamin D, Calcium, Phosphorus, and Magnesium. United States Department of Agriculture, Agricultural Research Service.
        (Available at:) (Accessed November 2009)
        • Elin R.J.
        Assessment of magnesium status for diagnosis and therapy.
        Magne Res. 2010; 23: 1-5
        • Mazur A.
        • Maier J.A.M.
        • Rock E.
        • Gueux E.
        • Nowacki W.
        • Rassiguier Y.
        Magnesium and the inflammatory response: potential physiopathological implications.
        Arch Biochem Biophys. 2007; 458: 48-56
        • Vormann J.
        • Günther T.
        • Höllriegl V.
        • Schümann K.
        Pathobiochemical effects of graded magnesium deficiency in rats.
        Z Ernährungswiss. 1998; 37: 92-97
        • Kramer J.H.
        • Mak I.T.
        • Phillips T.M.
        • Weglicki W.B.
        Dietary magnesium intake influences circulating pro-inflammatory neuropeptide levels and loss of myocardial tolerance to postischemic stress.
        Exp Biol Med. 2003; 228: 665-673
        • Blache D.
        • Devaux S.
        • Joubert O.
        • et al.
        Long-term moderate magnesium-deficient diet shows relationships between blood pressure, inflammation, and oxidant stress defense in aging rats.
        Free Radic Biol Med. 2006; 41: 277-284
        • Adrian M.
        • Chanut E.
        • Laurant P.
        • Gaume V.
        • Berthelot A.
        A long-term moderate magnesium-deficient diet aggravates cardiovascular risks associated with aging and increases mortality in rats.
        J Hyperten. 2008; 26: 44-52
        • Rude R.K.
        • Gruber H.E.
        • Norton H.J.
        • Wei L.Y.
        • Frausto A.
        • Kilburn J.
        Reduction of dietary magnesium by only 50% in the rat disrupts bone and mineral metabolism.
        Osteoporos Int. 2006; 17: 1022-1032
        • Yamaguchi Y.
        • Kitagawa S.
        • Kunitomo M.
        • Fujiwara M.
        Preventive effects of magnesium on raised serum lipid peroxide levels and aortic cholesterol deposition in mice fed an atherogenic diet.
        Magne Res. 1994; 7: 31-37
        • Seelig M.S.
        Magnesium (and trace substances) deficiencies in the pathogenesis of cancer.
        Biol Trace Elem Res. 1979; 1: 273-297
        • Günther T.
        • Vormann J.
        • Höllriegl V.
        • Disch G.
        • Classen H.-G.
        Role of lipid peroxidation and vitamin E in magnesium deficiency.
        Magnes Bull. 1992; 14: 57-66
        • Zhu Z.
        • Kimura M.
        • Itokawa Y.
        Selenium concentration and glutathione peroxidase activity in selenium and magnesium-deficient rats.
        Biol Trace Elem Res. 1993; 37: 209-217
        • Kramer J.H.
        • Mišík V.
        • Weglicki W.
        Magnesium-deficiency potentiates free radical production associated with postischemic injury to rat hearts: vitamin E affords protection.
        Free Radic Biol Med. 1994; 16: 713-723
        • Rattanatayarom W.
        • Classen H.G.
        • Schimatschek H.F.
        • Jensen U.
        • Drescher B.
        • Günther T.
        Increase of streptozocin toxicity by magnesium deficiency in the diabetic rat model.
        Arzneimittelforschung. 1994; 44: 1237-1241
        • Mak I.T.
        • Kramer J.H.
        • Weglicki W.B.
        Suppression of neutrophil and endothelial activation by substance P receptor blockade in the Mg-deficient rat.
        Magnes Res. 2003; 16: 91-97
        • Rude R.K.
        • Wei L.
        • Norton H.J.
        • Lu S.S.
        • Dempster D.W.
        • Gruber H.E.
        TNF alpha receptor knockout in mice reduces adverse effects of magnesium deficiency in bone.
        Growth Factors. 2009; 27: 370-376
        • Freedman A.M.
        • Cassidy M.M.
        • Weglicki W.B.
        Propranolol reduces cardiomyopathic injury induced by magnesium deficiency.
        Magnes Trace Elem. 1992; 10: 348-354
        • Atrakchi A.H.
        • Bloom S.
        • Dickens B.F.
        • Mak I.T.
        • Weglicki W.B.
        Hypomagnesemia and isoproterenol cardiomyophathies: protection by probucol.
        J Cardiovasc Pathol. 1992; 1: 155-160
        • Barbagallo M.
        • Dominguez L.J.
        • Resnick L.M.
        The protective effect of captopril against ischemic stress: role of cellular magnesium.
        Hypertension. 1999; 34: 958-963
        • Freedman A.M.
        • Atrakchi A.H.
        • Cassidy M.M.
        • Weglicki W.B.
        Magnesium deficiency-induced cardiomyopathy: protection by vitamin E.
        Biochem Biophys Res Comm. 1990; 170: 1102-1106
        • Bussiere F.I.
        • Gueux E.
        • Rock E.
        • Mazur A.
        • Rayssiguier Y.
        Protective effect of calcium deficiency on the inflammatory response in magnesium-deficient rats.
        Eur J Nutr. 2002; 41: 197-202
        • Bussiére F.
        • Gueux E.
        • Rock E.
        • Mazur A.
        • Rayssiguier Y.
        Female rats are less susceptible to inflammation induced by magnesium deficiency than males: the influence of estrogen.
        in: Rayssiguier Y. Mazur A. Durlach J. Advances in Magnesium Research: Nutrition and Health. John Libby, Eastleigh2001: 313-314
        • Libako P.
        • Nowacki W.
        • Rock E.
        • Rayssiguier Y.
        • Mazur A.
        Phagocyte priming by low magnesium status: input to the enhanced inflammatory and oxidative stress responses.
        Magnes Res. 2010; 23: 1-4
        • Rude R.K.
        • Shils M.E.
        in: Shils M.E. Shike M. Ross A.C. Caballero B. Cousins R.I. Modern Nutrition in Health and Disease. 10th ed. Lippincott Williams & Wilkins, Philadelphia, PA2006: 223-247
        • Tekero-Taldo M.I.
        • Karmer J.H.
        • Mak I.T.
        • Komarov A.M.
        • Weglicki W.B.
        The nerve-heart connection in the pro-oxidant response to Mg-deficiency.
        Heart Fail Rev. 2006; 11: 35-44
        • Calder P.C.
        n-polyunsaturated fatty acids, inflammation, and inflammatory diseases.
        Am J Clin Nutr. 2006; 83: S1505-S1519
        • Weglicki W.B.
        Hypomagnesemia and inflammation: clinical and basic aspects.
        Annu Rev Nutr. 2012; 32: 55-71
        • Tejero-Taldo M.I.
        • Chmielinska J.J.
        • Bonzalez G.
        • Mak I.T.
        • Weglicki W.B.
        N-methyl-D-aspartate receptor blockade inhibits cardiac inflammation in the Mg2+-deficient rat.
        J Pharmacol Exp Ther. 2004; 311: 8-13
        • Alloui A.
        • Begon S.
        • Chassaing C.
        • et al.
        Does Mg2+ deficiency induce a long-term sensitization of the central nociceptive pathway?.
        Eur J Pharmacol. 2003; 469: 65-69
        • Lin C.Y.
        • Tsai P.S.
        • Hung Y.C.
        • Huang C.J.
        L-type calcium channels are involved in mediating the anti-inflammatory effects of magnesium sulphate.
        Br J Anaesth. 2010; 104: 44-51
        • Su N.-Y.
        • Peng T.-C.
        • Tsai P.-S.
        • Huang C.-J.
        Phosphoinositide 3-kinase/Akt pathway is involved in mediating the anti-inflammation effects of magnesium sulfate.
        J Surg Res. 2013; 185: 726-732
        • Pearson T.A.
        • Mensah G.A.
        • Alexander R.W.
        • et al.
        Markers of inflammation and cardiovascular disease. Application to clinical and public health practice. A statement for healthcare professionals from the Centers of Disease Control and Prevention and the American Heart Association.
        Circulation. 2003; 107: 499-511
        • King D.E.
        • Mainous III, A.G.
        • Geesey M.E.
        • Egan B.M.
        • Rehman S.
        Magnesium supplement intake and C-reactive protein levels in adults.
        Nutr Res. 2006; 26: 193-196
        • King D.E.
        • Mainous III, A.G.
        • Geesey M.E.
        • Ellis T.
        Magnesium intake and serum C-reactive protein levels in children.
        Magnes Res. 2007; 20: 32-36
        • Bo S.
        • Durazzo M.
        • Guidi S.
        • et al.
        Dietary magnesium and fiber intakes and inflammatory and metabolic indicators in middle-aged subjects from a population-based cohort.
        Am J Clin Nutr. 2006; 84: 1062-1067
        • Chacko S.A.
        • Song Y.
        • Nathan L.
        • et al.
        Relations of dietary magnesium intake to biomarkers of inflammation and endothelial dysfunction in an ethnically diverse cohort of postmenopausal women.
        Diabetes Care. 2010; 33: 304-310
        • Song Y.
        • Ridker P.M.
        • Manson J.F.
        • Cook N.R.
        • Buring J.E.
        • Liu S.
        Magnesium intake, C-reactive protein, and the prevalence of metabolic syndrome in middle-aged and older U.S. women.
        Diabetes Care. 2005; 28: 1438-1444
        • Song Y.
        • Li T.Y.
        • van Dam R.M.
        • Manson J.E.
        • Hu F.B.
        Magnesium intake and plasma concentrations of markers of systemic inflammation and endothelial dysfunction in women.
        Am J Clin Nutr. 2007; 85: 1058-1074
        • Kim D.J.
        • Xun P.
        • Liu K.L.
        • et al.
        Magnesium intake in relation to systemic inflammation, insulin resistance, and the incidence of diabetes.
        Diabetes Care. 2010; 33: 2604-2610
        • Almoznino Sarafian D.
        • Berman S.
        • Mor A.
        • et al.
        Magnesium and C-reactive protein in heart failure: an anti-inflammatory effect of magnesium administration?.
        Eur J Nutr. 2007; 46: 230-237
        • Simental-Mendia L.E.
        • Rodriguez-Morán M.
        • Guerrero-Romero F.
        Oral magnesium supplementation decreases C-reactive protein levels in subjects with prediabetes and hypomagnesemia: a clinical randomized double-blind placebo-controlled trial.
        Arch Med Res. 2014; 45: 325-330
        • Mahalle N.
        • Garg M.K.
        • Kulkarni M.V.
        • Naik S.S.
        Relation of magnesium with insulin resistance and inflammatory markers in subjects with known coronary artery disease.
        J Card Dis Res. 2014; 5: 22-29
        • Larsson S.C.
        • Orsini N.
        • Wolk A.
        Dietary magnesium intake and risk of stroke: a meta-analysis of prospective studies.
        Amer J Clin Nutr. 2012; 95: 362-366
        • Nie Z.-L.
        • Wang Z.-M.
        • Zhou B.
        • Tang Z.-P.
        • Want S.-K.
        Magnesium intake and incidence of stroke: meta-analysis of cohort studies.
        Nutr Metab Cardiovasc Dis. 2013; 23: 169-176
        • Adebamowo S.N.
        • Spiegelman D.
        • Willett W.C.
        • Rexrode K.M.
        Association between intakes of magnesium, potassium, and calcium and risk of stroke: 2 cohorts of US women and updated meta-analysis.
        Am J Clin Nutr. 2015; 101: 1269-1277
        • Larrsson S.C.
        • Wolk A.
        Magnesium intake and risk of type 2 diabetes: a meta=analysis.
        J Intern Med. 2007; 262: 208-214
        • Wark P.A.
        • Lau R.
        • Norat T.
        • Kampman E.
        Magnesium intake and colorectal tumor risk: a case-control study and meta-analysis.
        Am J Clin Nutr. 2012; 96: 622-631
        • Song Y.
        • Manson J.E.
        • Cook N.R.
        • Albert C.M.
        • Buring J.E.
        • Liu S.
        Dietary magnesium intake and risk of cardiovascular disease among women.
        Am J Cardiol. 2005; 96: 1135-1141
        • Kaluza J.
        • Orsini N.
        • Levitan E.B.
        • Brzozowska A.
        • Roszkowski W.
        • Wolk A.
        Dietary calcium and magnesium intake and mortality: a prospective study of men.
        Am J Epidemiol. 2010; 171: 801-807