Advertisement

Magnesium and Blood Pressure: A Physiology-Based Approach

  • Joëlle C. Schutten
    Correspondence
    Address correspondence to Joëlle C. Schutten, Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Hanzeplein 1 9700 RB, Groningen, The Netherlands.
    Affiliations
    Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
    Search for articles by this author
  • Michel M. Joosten
    Affiliations
    Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
    Search for articles by this author
  • Martin H. de Borst
    Affiliations
    Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
    Search for articles by this author
  • Stephan J.L. Bakker
    Affiliations
    Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
    Search for articles by this author
      Hypertension is an important public health challenge because of its high prevalence and strong association with cardiovascular disease and premature death. Hypertension is a major cause of CKD, is present in more than 80% of CKD patients, and contributes to CKD progression. Risk factors for hypertension include, but are not limited to, age, race, family history, obesity, physical inactivity, tobacco use, and inadequate intake of minerals such as calcium, potassium, and magnesium. Magnesium is the second most abundant intracellular cation in the human body and plays an important role in insulin and adenosine triphosphate metabolism. Low dietary magnesium intake has been associated with an increased risk of developing hypertension in prospective cohort studies. Moreover, clinical trials suggest that magnesium supplementation has blood pressure–lowering effects. In addition, emerging data reveal potential mechanisms by which magnesium may influence blood pressure. Here, we will review these mechanisms, using a physiology-based approach, focusing on the effects of magnesium on total peripheral resistance and cardiac output.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Advances in Chronic Kidney Disease
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

      1. World Health Organization (WHO). A global brief on hypertension. Available at: http://apps.who.int/iris/bitstream/10665/79059/1/WHO_DCO_WHD_2013.2_eng.pdf. Published 2013. Accessed August 3, 2017.

        • Whaley-Connell A.T.
        • Sowers J.R.
        • Stevens L.A.
        • et al.
        CKD in the United States: Kidney early evaluation program (KEEP) and national health and nutrition examination survey (NHANES) 1999-2004.
        Am J Kidney Dis. 2008; 51: S13-S20
        • Houston M.C.
        • Harper K.J.
        Potassium, magnesium, and calcium: their role in both the cause and treatment of hypertension.
        J Clin Hypertens (Greenwich). 2008; 10: 3-11
        • Rosanoff A.
        • Weaver C.M.
        • Rude R.K.
        Suboptimal magnesium status in the United States: are the health consequences underestimated?.
        Nutr Rev. 2012; 70: 153-164
        • Volpe S.L.
        Magnesium in disease prevention and overall health.
        Adv Nutr. 2013; 4: 378S-383S
        • Witteman J.C.
        • Willett W.C.
        • Stampfer M.J.
        • et al.
        A prospective study of nutritional factors and hypertension among US women.
        Circulation. 1989; 80: 1320-1327
        • Ascherio A.
        • Rimm E.B.
        • Giovannucci E.L.
        • et al.
        A prospective study of nutritional factors and hypertension among US men.
        Circulation. 1992; 86: 1475-1484
        • Peacock J.M.
        • Folsom A.R.
        • Arnett D.K.
        • Eckfeldt J.H.
        • Szklo M.
        Relationship of serum and dietary magnesium to incident hypertension: the atherosclerosis risk in communities (ARIC) study.
        Ann Epidemiol. 1999; 9: 159-165
        • Han H.
        • Fang X.
        • Wei X.
        • et al.
        Dose-response relationship between dietary magnesium intake, serum magnesium concentration and risk of hypertension: a systematic review and meta-analysis of prospective cohort studies.
        Nutr J. 2017; 16: 26
        • Nissensohn M.
        • Roman-Vinas B.
        • Sanchez-Villegas A.
        • Piscopo S.
        • Serra-Majem L.
        The effect of the mediterranean diet on hypertension: a systematic review and meta-analysis.
        J Nutr Educ Behav. 2016; 48: 42-53.e1
        • Ndanuko R.N.
        • Tapsell L.C.
        • Charlton K.E.
        • Neale E.P.
        • Batterham M.J.
        Dietary patterns and blood pressure in adults: a systematic review and meta-analysis of randomized controlled trials.
        Adv Nutr. 2016; 7: 76-89
        • Appel L.J.
        • Moore T.J.
        • Obarzanek E.
        • et al.
        • DASH Collaborative Research Group
        A clinical trial of the effects of dietary patterns on blood pressure.
        N Engl J Med. 1997; 336: 1117-1124
        • Taylor E.N.
        • Stampfer M.J.
        • Mount D.B.
        • Curhan G.C.
        DASH-style diet and 24-hour urine composition.
        Clin J Am Soc Nephrol. 2010; 5: 2315-2322
        • Joosten M.M.
        • Gansevoort R.T.
        • Mukamal K.J.
        • et al.
        Urinary magnesium excretion and risk of hypertension: the prevention of renal and vascular end-stage disease study.
        Hypertension. 2013; 61: 1161-1167
        • Dyckner T.
        • Wester P.O.
        Effect of magnesium on blood pressure.
        Br Med J (Clin Res Ed). 1983; 286: 1847-1849
        • Kass L.
        • Weekes J.
        • Carpenter L.
        Effect of magnesium supplementation on blood pressure: a meta-analysis.
        Eur J Clin Nutr. 2012; 66: 411-418
        • Jee S.H.
        • Miller 3rd, E.R.
        • Guallar E.
        • Singh V.K.
        • Appel L.J.
        • Klag M.J.
        The effect of magnesium supplementation on blood pressure: a meta-analysis of randomized clinical trials.
        Am J Hypertens. 2002; 15: 691-696
        • Zhang X.
        • Li Y.
        • Del Gobbo L.C.
        • et al.
        Effects of magnesium supplementation on blood pressure: a meta-analysis of randomized double-blind placebo-controlled trials.
        Hypertens (Dallas, Tex 1979). 2016; 68: 324-333
        • Dibaba D.T.
        • Xun P.
        • Song Y.
        • Rosanoff A.
        • Shechter M.
        • He K.
        The effect of magnesium supplementation on blood pressure in individuals with insulin resistance, prediabetes, or noncommunicable chronic diseases: a meta-analysis of randomized controlled trials.
        Am J Clin Nutr. 2017; 106: 921-929
        • Salyer S.A.
        • Parks J.
        • Barati M.T.
        • et al.
        Aldosterone regulates Na(+), K(+) ATPase activity in human renal proximal tubule cells through mineralocorticoid receptor.
        Biochim Biophys Acta. 2013; 1833: 2143-2152
        • Atarashi K.
        • Matsuoka H.
        • Takagi M.
        • Sugimoto T.
        Magnesium ion: a possible physiological regulator of aldosterone production.
        Life Sci. 1989; 44: 1483-1489
        • Atarashi K.
        • Takagi M.
        • Matsuoka H.
        • Sugimoto T.
        Effects of magnesium on changes in blood pressure and plasma aldosterone induced by angiotensin II.
        Am J Hypertens. 1990; 3: 488-490
        • Jin K.
        • Kim T.H.
        • Kim Y.H.
        • Kim Y.W.
        Additional antihypertensive effect of magnesium supplementation with an angiotensin II receptor blocker in hypomagnesemic rats.
        Korean J Intern Med. 2013; 28: 197-205
        • Ginn H.E.
        • Cade R.
        • McCallum T.
        • Fregley M.
        Aldosterone secretion in magnesium-deficient rats.
        Endocrinology. 1967; 80: 969-971
        • Solounias B.M.
        • Schwartz R.
        The effect of magnesium deficiency on serum aldosterone in rats fed two levels of sodium.
        Life Sci. 1975; 17: 1211-1217
        • Resnick L.M.
        • Laragh J.H.
        • Sealey J.E.
        • Alderman M.H.
        Divalent cations in essential hypertension. Relations between serum ionized calcium, magnesium, and plasma renin activity.
        N Engl J Med. 1983; 309: 888-891
        • Kojima I.
        • Kojima K.
        • Rasmussen H.
        Effects of ANG II and K+ on Ca efflux and aldosterone production in adrenal glomerulosa cells.
        Am J Physiol. 1985; 248: E36-E43
        • Turlapaty P.D.
        • Altura B.M.
        Extracellular magnesium ions control calcium exchange and content of vascular smooth muscle.
        Eur J Pharmacol. 1978; 52: 421-423
        • Fischer P.W.
        • Giroux A.
        Effects of dietary magnesium on sodium-potassium pump action in the heart of rats.
        J Nutr. 1987; 117: 2091-2095
        • Wong N.L.
        • Hu D.C.
        • Wong E.F.
        Effect of dietary magnesium on atrial natriuretic peptide release.
        Am J Physiol. 1991; 261: H1353-H1357
        • Goodman W.G.
        • Goldin J.
        • Kuizon B.D.
        • et al.
        Coronary-artery calcification in young adults with end-stage renal disease who are undergoing dialysis.
        N Engl J Med. 2000; 342: 1478-1483
        • Baia L.C.
        • Heilberg I.P.
        • Navis G.
        • de Borst M.H.
        Phosphate and FGF-23 homeostasis after kidney transplantation.
        Nat Rev Nephrol. 2015; 11: 656-666
        • Salem S.
        • Bruck H.
        • Bahlmann F.H.
        • et al.
        Relationship between magnesium and clinical biomarkers on inhibition of vascular calcification.
        Am J Nephrol. 2012; 35: 31-39
        • Zelt J.G.E.
        • McCabe K.M.
        • Svajger B.
        • et al.
        Magnesium modifies the impact of calcitriol treatment on vascular calcification in experimental chronic kidney disease.
        J Pharmacol Exp Ther. 2015; 355: 451-462
        • Martinez-Moreno J.M.
        • Munoz-Castaneda J.R.
        • Herencia C.
        • et al.
        In vascular smooth muscle cells paricalcitol prevents phosphate-induced Wnt/beta-catenin activation.
        Am J Physiol Renal Physiol. 2012; 303: F1136-F1144
        • Montezano A.C.
        • Zimmerman D.
        • Yusuf H.
        • et al.
        Vascular smooth muscle cell differentiation to an osteogenic phenotype involves TRPM7 modulation by magnesium.
        Hypertens (Dallas, Tex 1979). 2010; 56: 453-462
        • Hruby A.
        • O’Donnell C.J.
        • Jacques P.F.
        • Meigs J.B.
        • Hoffmann U.
        • McKeown N.M.
        Magnesium intake is inversely associated with coronary artery calcification: the Framingham heart study.
        JACC Cardiovasc Imaging. 2014; 7: 59-69
        • Keyzer C.A.
        • de Borst M.H.
        • van den Berg E.
        • et al.
        Calcification propensity and Survival among renal transplant recipients.
        J Am Soc Nephrol. 2016; 27: 239-248
        • Montes de Oca A.
        • Guerrero F.
        • Martinez-Moreno J.M.
        • et al.
        Magnesium inhibits Wnt/beta-catenin activity and reverses the osteogenic transformation of vascular smooth muscle cells.
        PLoS One. 2014; 9: e89525
        • Van Laecke S.
        • Marechal C.
        • Verbeke F.
        • et al.
        The relation between hypomagnesaemia and vascular stiffness in renal transplant recipients.
        Nephrol Dial Transplant. 2011; 26: 2362-2369
        • Joris P.J.
        • Plat J.
        • Bakker S.J.
        • Mensink R.P.
        Long-term magnesium supplementation improves arterial stiffness in overweight and obese adults: results of a randomized, double-blind, placebo-controlled intervention trial.
        Am J Clin Nutr. 2016; 103: 1260-1266
        • Laurent S.
        • Boutouyrie P.
        • Asmar R.
        • et al.
        Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in hypertensive patients.
        Hypertens (Dallas, Tex 1979). 2001; 37: 1236-1241
        • Vlachopoulos C.
        • Aznaouridis K.
        • Stefanadis C.
        Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis.
        J Am Coll Cardiol. 2010; 55: 1318-1327
        • Shechter M.
        • Sharir M.
        • Labrador M.J.
        • Forrester J.
        • Silver B.
        • Bairey Merz C.N.
        Oral magnesium therapy improves endothelial function in patients with coronary artery disease.
        Circulation. 2000; 102: 2353-2358
        • Watson K.V.
        • Moldow C.F.
        • Ogburn P.L.
        • Jacob H.S.
        Magnesium sulfate: rationale for its use in preeclampsia.
        Proc Natl Acad Sci U S A. 1986; 83: 1075-1078
        • Weglicki W.B.
        • Phillips T.M.
        • Freedman A.M.
        • Cassidy M.M.
        • Dickens B.F.
        Magnesium-deficiency elevates circulating levels of inflammatory cytokines and endothelin.
        Mol Cell Biochem. 1992; 110: 169-173
        • Iseri L.T.
        • French J.H.
        Magnesium: nature's physiologic calcium blocker.
        Am Heart J. 1984; 108: 188-193
        • Afsar B.
        • Elsurer R.
        The relationship between magnesium and ambulatory blood pressure, augmentation index, pulse wave velocity, total peripheral resistance, and cardiac output in essential hypertensive patients.
        J Am Soc Hypertens. 2014; 8: 28-35
        • Pearson P.J.
        • Evora P.R.
        • Seccombe J.F.
        • Schaff H.V.
        Hypomagnesemia inhibits nitric oxide release from coronary endothelium: protective role of magnesium infusion after cardiac operations.
        Ann Thorac Surg. 1998; 65: 967-972
        • Joris P.J.
        • Plat J.
        • Bakker S.J.L.
        • Mensink R.P.
        Effects of long-term magnesium supplementation on endothelial function and cardiometabolic risk markers: a randomized controlled trial in overweight/obese adults.
        Sci Rep. 2017; 7: 106
        • Ridker P.M.
        • Everett B.M.
        • Thuren T.
        • et al.
        Antiinflammatory therapy with canakinumab for atherosclerotic disease.
        N Engl J Med. 2017; 377: 1119-1131
        • Song Y.
        • Li T.Y.
        • van Dam R.M.
        • Manson J.E.
        • Hu F.B.
        Magnesium intake and plasma concentrations of markers of systemic inflammation and endothelial dysfunction in women.
        Am J Clin Nutr. 2007; 85: 1068-1074
        • Gommers L.M.M.
        • Hoenderop J.G.J.
        • Bindels R.J.M.
        • de Baaij J.H.F.
        Hypomagnesemia in type 2 diabetes: a vicious circle?.
        Diabetes. 2016; 65: 3-13
        • Paolisso G.
        • Barbagallo M.
        Hypertension, diabetes mellitus, and insulin resistance: the role of intracellular magnesium.
        Am J Hypertens. 1997; 10: 346-355
        • Yki-Jarvinen H.
        Insulin resistance and endothelial dysfunction.
        Best Pract Res Clin Endocrinol Metab. 2003; 17: 411-430
        • Lostroh A.J.
        • Krahl M.E.
        Insulin action. Accumulation in vitro of Mg 2 + and K + in rat uterus: ion pump activity.
        Biochim Biophys Acta. 1973; 291: 260-268
        • Guerrero-Romero F.
        • Tamez-Perez H.E.
        • Gonzalez-Gonzalez G.
        • et al.
        Oral magnesium supplementation improves insulin sensitivity in non-diabetic subjects with insulin resistance. A double-blind placebo-controlled randomized trial.
        Diabetes Metab. 2004; 30: 253-258
        • Rodriguez-Moran M.
        • Guerrero-Romero F.
        Oral magnesium supplementation improves insulin sensitivity and metabolic control in type 2 diabetic subjects: a randomized double-blind controlled trial.
        Diabetes Care. 2003; 26: 1147-1152
        • Kieboom B.C.T.
        • Ligthart S.
        • Dehghan A.
        • et al.
        Serum magnesium and the risk of prediabetes: a population-based cohort study.
        Diabetologia. 2017; 60: 843-853
        • Shimosawa T.
        • Takano K.
        • Ando K.
        • Fujita T.
        Magnesium inhibits norepinephrine release by blocking N-type calcium channels at peripheral sympathetic nerve endings.
        Hypertension. 2004; 44: 897-902
        • Lichodziejewska B.
        • Klos J.
        • Rezler J.
        • et al.
        Clinical symptoms of mitral valve prolapse are related to hypomagnesemia and attenuated by magnesium supplementation.
        Am J Cardiol. 1997; 79: 768-772
        • Binnenmars S.H.
        • Hijmans R.S.
        • Navis G.
        • de Borst M.H.
        Biomarkers of renal function: towards clinical actionability.
        Clin Pharmacol Ther. 2017; 102: 481-492