Advertisement

Flaviviruses and Kidney Diseases

  • Emmanuel A. Burdmann
    Correspondence
    Address correspondence to Emmanuel A. Burdmann, Faculdade de Medicina da Universidade de São Paulo, Avenida Dr. Arnaldo 455, sala 3304 Cerqueira César, São Paulo, São Paulo, Brazil, 01246-903.
    Affiliations
    Faculdade de Medicina da Universidade de São Paulo, São Paulo, São Paulo, Brazil
    Search for articles by this author
      The genus Flavivirus comprises approximately 73 viruses, which share several common aspects, such as dimension, structure, nucleic acid properties, and shape in electronic microscopy. Global incidence of flavivirus infection increased dramatically over the last decades, causing large outbreaks in several areas of the world. These viruses are expanding from endemic tropical and subtropical areas to previously nonendemic areas, affecting and causing diseases in millions of individuals worldwide and posing a formidable challenge to public health in several countries. The majority of clinically significant flavivirus-associated infections are mosquito borne (arboviruses—acronym for ARthropod-BOrne VIRUSES), such as dengue, yellow fever, Japanese encephalitis, Zika, and West Nile fever. Most diseases caused by flaviviruses are asymptomatic or manifest as self-limited, mild, undifferentiated febrile diseases. In a limited number of cases, these diseases may evolve to severe inflammatory, multisystem diseases, causing high morbidity and mortality. Some flaviviruses have been consistently identified in kidney tissue and urine and have been clinically associated with kidney diseases. In this review, we will provide an overview of the epidemiology, risk factors, kidney pathology, etiopathogenesis, and outcomes of acute and chronic kidney syndromes associated with dengue, yellow fever, Zika, and West Nile virus disease.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Advances in Chronic Kidney Disease
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Daep C.A.
        • Muñoz-Jordán J.L.
        • Eugenin E.A.
        Flaviviruses, an expanding threat in public health: focus on dengue, West Nile, and Japanese encephalitis virus.
        J Neurovirol. 2014; 20: 539-560
        • Holbrook M.R.
        Historical Perspectives on flavivirus Research.
        Viruses. 2017; 9: E97
        • Solomon T.
        • Mallewa M.
        Dengue and other emerging flaviviruses.
        J Infect. 2001; 42: 104-115
        • Pettersson J.H.
        • Fiz-Palacios O.
        Dating the origin of the genus Flavivirus in the light of Beringian biogeography.
        J Gen Virol. 2014; 95: 1969-1982
        • Hidalgo J.
        • Richards G.A.
        • Jiménez J.I.S.
        • Baker T.
        • Amin P.
        Viral hemorrhagic fever in the tropics: report from the task force on tropical diseases by the world Federation of Societies of intensive and critical care medicine.
        J Crit Care. 2017; 42: 366-372
        • Leta S.
        • Beyene T.J.
        • De Clercq E.M.
        • Amenu K.
        • Kraemer M.U.G.
        • Revie C.W.
        Global risk mapping for major diseases transmitted by Aedes aegypti and Aedes albopictus.
        Int J Infect Dis. 2018; 67: 25-35
        • Brito C.A.
        • Cordeiro M.T.
        One year after the Zika virus outbreak in Brazil: from hypotheses to evidence.
        Rev Soc Bras Med Trop. 2016; 49: 537-543
        • Guo C.
        • Zhou Z.
        • Wen Z.
        • et al.
        Global epidemiology of dengue outbreaks in 1990-2015: a systematic review and Meta-analysis.
        Front Cell Infect Microbiol. 2017; 7: 317
        • Rezende I.M.
        • Sacchetto L.
        • Munhoz de Mello É.
        • et al.
        Persistence of yellow fever virus outside the Amazon basin, causing epidemics in Southeast Brazil, from 2016 to 2018.
        Plos Negl Trop Dis. 2018; 12: e0006538
        • Proenca-Modena J.L.
        • Milanez G.P.
        • Costa M.L.
        • Judice C.C.
        • Maranhão Costa F.T.
        Zika virus: lessons learned in Brazil.
        Microbes Infect. 2018; 20: 661-669
        • Moreira-Soto A.
        • Torres M.C.
        • Lima de Mendonça M.C.
        • et al.
        Evidence for multiple sylvatic transmission cycles during the 2016-2017 yellow fever virus outbreak, Brazil.
        Clin Microbiol Infect. 2018; 24: 1019.e1-1019.e4
        • Petersen L.R.
        • Marfin A.A.
        Shifting epidemiology of Flaviviridae.
        J Trav Med. 2005; 12: S3-S11
      1. Arboviral Diseases - United States, 2017.
        MMWR Morb Mortal Wkly Rep. 2018; 67: 1137-1142
        • McGibbon E.
        • Moy M.
        • Vora N.M.
        • et al.
        Epidemiological characteristics and Laboratory findings of Zika virus cases in New York city, January 1, 2016-June 30, 2017.
        Vector Borne Zoonotic Dis. 2018; 18: 382-389
        • Barzon L.
        Ongoing and emerging arbovirus threats in Europe.
        J Clin Virol. 2018; 107: 38-47
        • Tabachnick W.J.
        Climate change and the arboviruses: lessons from the Evolution of the dengue and yellow fever viruses.
        Annu Rev Virol. 2016; 3: 125-145
        • Fuller T.L.
        • Calvet G.
        • Genaro Estevam C.
        • et al.
        Behavioral, climatic, and environmental risk factors for Zika and Chikungunya virus infections in Rio de Janeiro, Brazil, 2015-16.
        PLoS One. 2017; 12: e0188002
        • Burdmann E.A.
        • Jha V.
        Acute kidney injury due to tropical infectious diseases and animal venoms: a tale of 2 continents.
        Kidney Int. 2017; 91: 1033-1046
        • Barzon L.
        • Pacenti M.
        • Palù G.
        West Nile virus and kidney disease.
        Expert Rev Anti Infect Ther. 2013; 11: 479-487
        • Oliveira J.F.
        • Burdmann E.A.
        Dengue-associated acute kidney injury.
        Clin Kidney J. 2015; 8: 681-685
        • Bhatt S.
        • Gething P.W.
        • Brady O.J.
        • et al.
        The global distribution and burden of dengue.
        Nature. 2013; 496: 504-507
        • Shepard D.S.
        • Undurraga E.A.
        • Halasa Y.A.
        • Stanaway J.D.
        The global economic burden of dengue: a systematic analysis.
        Lancet Infect Dis. 2016; 16: 935-941
        • Guzman M.G.
        • Harris E.
        Dengue.
        Lancet. 2015; 385: 453-465
        • Normile D.
        Tropical medicine. Surprising new dengue virus throws a spanner in disease control efforts.
        Science. 2013; 342: 415
        • World Health Organization
        Dengue: Guidelines for Diagnosis, Treatment, Prevention and Control. New edition. World Health Organization, Geneva2009
        • Gurugama P.
        • Jayarajah U.
        • Wanigasuriya K.
        • Wijewickrama A.
        • Perera J.
        • Seneviratne S.L.
        Renal manifestations of dengue virus infections.
        J Clin Virol. 2018; 101: 1-6
        • Mallhi T.H.
        • Khan A.H.
        • Adnan A.S.
        • Sarriff A.
        • Khan Y.H.
        • Jummaat F.
        Incidence, characteristics and risk factors of acute kidney injury among dengue patients: a retrospective analysis.
        PLoS One. 2015; 10: e0138465
        • Mallhi T.H.
        • Khan A.H.
        • Sarriff A.
        • Adnan A.S.
        • Khan Y.H.
        • Jummaat F.
        Defining acute kidney injury in dengue viral infection by conventional and novel classification systems (AKIN and RIFLE): a comparative analysis.
        Postgrad Med J. 2016; 92: 78-86
        • Nair J.J.
        • Bhat A.
        • Prabhu M.V.
        A clinical study of acute kidney injury in tropical acute febrile illness.
        J Clin Diagn Res. 2016; 10: OC01-OC05
        • Vachvanichsanong P.
        • McNeil E.
        Electrolyte disturbance and kidney dysfunction in Dengue viral infection.
        Southeast Asian J Trop Med Public Health. 2015; 46: 108-117
        • Lima E.Q.
        • Gorayeb F.S.
        • Zanon J.R.
        • Nogueira M.L.
        • Ramalho H.J.
        • Burdmann E.A.
        Dengue haemorrhagic fever-induced acute kidney injury without hypotension, haemolysis or rhabdomyolysis.
        Nephrol Dial Transpl. 2007; 22: 3322-3326
        • Horvath R.
        • McBride W.J.H.
        • Hanna J.
        Clinical features of hospitalized patients during Dengue-3 epidemic in far north Queensland 1997–1999.
        Dengue Bull. 1999; 23: 24-29
        • Vasanwala F.F.
        • Puvanendran R.
        • Ng J.M.
        • Suhail S.M.
        Two cases of self-limiting nephropathies secondary to dengue haemorrhagic fever.
        Singapore Med J. 2009; 50: e253-e255
        • Hutspardol S.
        • Prommalikit O.
        • Upiya N.
        • Chataroopwijit J.
        • Khemakanok K.
        • Assadamongkol K.
        Heavy proteinuria following dengue hemorrhagic fever.
        Southeast Asian J Trop Med Public Health. 2011; 42: 579-582
        • Hebbal P.
        • Darwich Y.
        • Fong J.
        • Hagmann S.H.F.
        • Purswani M.U.
        Nephrotic-range proteinuria in an eight-year-old traveler with severe dengue: case report and review of the literature.
        Trav Med Infect Dis. 2016; 14: 45-48
        • Boonpucknavig V.
        • Bhamarapravati N.
        • Boonpucknavig S.
        • Futrakul P.
        • Tanpaichitr P.
        Glomerular changes in dengue hemorrhagic fever.
        Arch Pathol Lab Med. 1976; 100: 206-212
        • Upadhaya B.K.
        • Sharma A.
        • Khaira A.
        • Dinda A.K.
        • Agarwal S.K.
        • Tiwari S.C.
        Transient IgA nephropathy with acute kidney injury in a patient with dengue fever.
        Saudi J Kidney Dis Transpl. 2010; 21: 521-525
        • Rajadhyaksha A.
        • Mehra S.
        Dengue fever evolving into systemic lupus erythematosus and lupus nephritis: a case report.
        Lupus. 2012; 21: 999-1002
        • Lizarraga K.J.
        • Florindez J.A.
        • Daftarian P.
        • et al.
        Anti-GBM disease and ANCA during dengue infection.
        Clin Nephrol. 2015; 83: 104-110
        • Bhargava V.
        • Gupta P.
        • Kauntia R.
        • Bajpai G.
        Dengue fever-induced thrombotic microangiopathy: an Unusual cause of renal failure.
        Indian J Nephrol. 2017; 27: 321-323
        • Nieto-Ríos J.F.
        • Álvarez Barreneche M.F.
        • Penagos S.C.
        • Bello Márquez D.C.
        • Serna-Higuita L.M.
        • Ramírez Sánchez I.C.
        Successful treatment of thrombotic microangiopathy associated with dengue infection: a case report and literature review.
        Transpl Infect Dis. 2018; 20: e12824
        • Thomas E.T.A.
        • George J.
        • Sruthi D.
        • Vineetha N.S.
        • Gracious N.
        Clinical course of dengue fever and its impact on renal function in renal transplant recipients and patients with chronic kidney disease.
        Nephrology (Carlton). 2019; 24: 564-568
        • Mohsin N.
        • Mohamed E.
        • Gaber M.
        • Obaidani I.
        • Budruddin M.
        • Al Busaidy S.
        Acute tubular necrosis associated with non-hemorrhagic Dengue fever: a case report.
        Ren Fail. 2009; 31: 736-739
        • Repizo L.P.
        • Malheiros D.M.
        • Yu L.
        • Barros R.T.
        • Burdmann E.A.
        Biopsy proven acute tubular necrosis due to rhabdomyolysis in a dengue fever patient: a case report and review of literature.
        Rev Inst Med Trop Sao Paulo. 2014; 56: 85-88
        • Basílio-de-Oliveira C.A.
        • Aguiar G.R.
        • Baldanza M.S.
        • Barth O.M.
        • Eyer-Silva W.A.
        • Paes M.V.
        Pathologic study of a fatal case of dengue-3 virus infection in Rio de Janeiro, Brazil.
        Braz J Infect Dis. 2005; 9: 341-347
        • Póvoa T.F.
        • Alves A.M.
        • Oliveira C.A.
        • Nuovo G.J.
        • Chagas V.L.
        • Paes M.V.
        The pathology of severe dengue in multiple organs of human fatal cases: histopathology, ultrastructure and virus replication.
        PLoS One. 2014; 9: e83386
        • Boonpucknavig S.
        • Vuttiviroj O.
        • Boonpucknavig V.
        Infection of young adult mice with dengue virus type 2.
        Trans R Soc Trop Med Hyg. 1981; 75: 647-653
        • Barreto D.F.
        • Takiya C.M.
        • Paes M.V.
        • et al.
        Histopathological aspects of Dengue-2 virus infected mice tissues and complementary virus isolation.
        J Submicrosc Cytol Pathol. 2004; 36: 121-130
        • Jessie K.
        • Fong M.Y.
        • Devi S.
        • Lam S.K.
        • Wong K.T.
        Localization of dengue virus in naturally infected human tissues, by immunohistochemistry and in situ hybridization.
        J Infect Dis. 2004; 189: 1411-1418
        • Rivera J.
        • Neira M.
        • Parra E.
        • Méndez J.
        • Sarmiento L.
        • Caldas M.L.
        [Detection of dengue virus antigen in post-mortem tissues].
        Biomedica. 2014; 34: 514-520
        • Póvoa T.F.
        • Oliveira E.R.
        • Basílio-de-Oliveira C.A.
        • et al.
        Peripheral organs of dengue fatal cases present strong pro-inflammatory response with participation of IFN-Gamma-, TNF-Alpha- and RANTES-producing cells.
        PLoS One. 2016; 11: e0168973
        • Talib Sh
        • Bhattu S.
        • Bhattu R.
        • Deshpande S.
        • Dahiphale D.
        Dengue fever triggering systemic lupus erythematosus and lupus nephritis: a case report.
        Int Med Case Rep J. 2013; 6: 71-75
        • Wiwanitkit V.
        Dengue nephropathy: Immunopathology and imune complex involvement.
        Saudi J Kidney Dis Transpl. 2016; 27: 1280-1282
        • Pagliari C.
        • Simões Quaresma J.A.
        • Kanashiro-Galo L.
        • et al.
        Human kidney damage in fatal dengue hemorrhagic fever results of glomeruli injury mainly induced by IL17.
        J Clin Virol. 2016; 75: 16-20
        • Moi M.L.
        • Takasaki T.
        • Kurane I.
        Detection of virus-antibody immune complexes in secondary dengue virus infection.
        Methods Mol Biol. 2018; 1604: 331-337
        • Mallhi T.H.
        • Khan A.H.
        • Sarriff A.
        • Adnan A.S.
        • Khan Y.H.
        Determinants of mortality and prolonged hospital stay among dengue patients attending tertiary care hospital: a cross-sectional retrospective analysis.
        BMJ Open. 2017; 7: e016805
        • Werneck G.L.
        • Macias A.E.
        • Mascarenas C.
        • et al.
        Comorbidities increase in-hospital mortality in dengue patients in Brazil.
        Mem Inst Oswaldo Cruz. 2018; 113: e180082
        • Jha V.
        • Prasad N.
        CKD and infectious diseases in Asia Pacific: Challenges and Opportunities.
        Am J Kidney Dis. 2016; 68: 148-160
        • Mallhi T.H.
        • Khan A.H.
        • Adnan A.S.
        • Sarriff A.
        • Khan Y.H.
        • Gan S.H.
        Short-term renal outcomes following acute kidney injury among dengue patients: a follow-up analysis from large prospective cohort.
        PLoS One. 2018; 13: e0192510
        • Bryant J.E.
        • Holmes E.C.
        • Barrett A.D.
        Out of Africa: a molecular perspective on the introduction of yellow fever virus into the Americas.
        PLoS Pathog. 2007; 18: e75
        • Douam F.
        • Ploss A.
        Yellow fever virus: Knowledge Gaps Impeding the Fight against an old Foe.
        Trends Microbiol. 2018; 26: 913-928
        • Klitting R.
        • Fischer C.
        • Drexler J.F.
        • et al.
        What Does the Future Hold for yellow fever virus? (II).
        Genes (Basel). 2018; 9: E425
        • Monath T.P.
        • Vasconcelos P.F.
        Yellow fever.
        J Clin Virol. 2015; 64: 160-173
        • Litvoc M.N.
        • Novaes C.T.G.
        • Lopes M.I.B.F.
        Yellow fever.
        Rev Assoc Med Bras (1992). 2018; 64: 106-113
        • Chippaux J.P.
        • Chippaux A.
        Yellow fever in Africa and the Americas: a historical and epidemiological perspective.
        J Venom Anim Toxins Incl Trop Dis. 2018; 24: 20
        • Song R.
        • Guan S.
        • Lee S.S.
        • et al.
        Late or lack of vaccination Linked to Importation of yellow fever from Angola to China.
        Emerg Infect Dis. 2018; 24: 1383-1386
        • Sérié C.
        • Lindrec A.
        • Poirier A.
        • Andral L.
        • Neri P.
        [Studies on yellow fever in Ethiopia. I. Introduction- clinical symptoms of yellow fever].
        Bull World Health Organ. 1968; 38: 835-841
        • Oudart J.L.
        • Rey M.
        [Proteinuria, proteinaemia, and serum transaminase activity in 23 confirmed cases of yellow fever].
        Bull World Health Organ. 1970; 42: 95-102
        • Jones E.M.
        • Wilson D.C.
        Clinical features of yellow fever cases at Vom Christian hospital during the 1969 epidemic on the Jos plateau, Nigeria.
        Bull World Health Organ. 1972; 46: 653-657
        • Chen Z.
        • Liu L.
        • Lv Y.
        • et al.
        A fatal yellow fever virus infection in China: description and lessons.
        Emerg Microbes Infect. 2016; 5: e69
        • Song A.T.W.
        • Abdala E.
        • de Martino R.B.
        • et al.
        Liver transplantation for fulminant hepatitis due to yellow fever.
        Hepatology. 2019; 69: 1349-1352
        • De Brito T.
        • Siqueira S.A.
        • Santos R.T.
        • Nassar E.S.
        • Coimbra T.L.
        • Alves V.A.
        Human fatal yellow fever. Immunohistochemical detection of viral antigens in the liver, kidney and heart.
        Pathol Res Pract. 1992; 188: 177-181
        • Fernandes N.C.C.A.
        • Cunha M.S.
        • Guerra J.M.
        • et al.
        Outbreak of yellow fever among nonhuman primates, Espirito Santo, Brazil, 2017.
        Emerg Infect Dis. 2017; 23: 2038-2041
        • Leal S.G.
        • Romano A.P.
        • Monteiro R.V.
        • Melo C.B.
        • Vasconcelos P.F.
        • Castro M.B.
        Frequency of histopathological changes in Howler monkeys (Alouatta sp.) naturally infected with yellow fever virus in Brazil.
        Rev Soc Bras Med Trop. 2016; 49: 29-33
        • Engelmann F.
        • Josset L.
        • Girke T.
        • et al.
        Pathophysiologic and transcriptomic analyses of viscerotropic yellow fever in a rhesus macaque model.
        Plos Negl Trop Dis. 2014; 8: e3295
        • Li G.
        • Duan T.
        • Wu X.
        • Tesh R.B.
        • Soong L.
        • Xiao S.Y.
        Yellow fever virus infection in Syrian golden hamsters: relationship between cytokine expression and pathologic changes.
        Int J Clin Exp Pathol. 2008; 1: 169-179
        • Vasconcelos P.F.
        • Luna E.J.
        • Galler R.
        • et al.
        Serious adverse events associated with yellow fever 17DD vaccine in Brazil: a report of two cases.
        Lancet. 2001; 358: 91
        • Whittembury A.
        • Ramirez G.
        • Hernández H.
        • et al.
        Viscerotropic disease following yellow fever vaccination in Peru.
        Vaccine. 2009; 27: 5974-5981
        • Monath T.P.
        Suspected yellow fever vaccine-associated viscerotropic adverse events (1973 and 1978), United States.
        Am J Trop Med Hyg. 2010; 82: 919-921
        • Song B.H.
        • Yun S.I.
        • Woolley M.
        • Lee Y.M.
        Zika virus: history, epidemiology, transmission, and clinical presentation.
        J Neuroimmunol. 2017; 308: 50-64
        • Dias Í.K.R.
        • Sobreira C.L.D.S.
        • Martins R.M.G.
        • et al.
        Zika virus: - a review of the main aspects of this type of arbovirosis.
        Rev Soc Bras Med Trop. 2018; 51: 261-269
        • Schirmer P.L.
        • Wendelboe A.
        • Lucero-Obusan C.A.
        • et al.
        Zika virus infection in the Veterans health Administration (VHA), 2015-2016.
        Plos Negl Trop Dis. 2018; 12: e0006416
        • Alcendor D.J.
        Zika virus infection and implications for kidney disease.
        J Mol Med (Berl). 2018; 96: 1145-1151
        • Alcendor D.J.
        Zika virus infection of the human glomerular cells: implications for viral reservoirs and renal pathogenesis.
        J Infect Dis. 2017; 216: 162-171
        • Peralta-Aros C.
        • García-Nieto V.
        Does Zika virus infection induce prolonged remissions in children with idiopathic nephrotic syndrome?.
        Pediatr Nephrol. 2017; 32: 897-900
        • Chen J.
        • Yang Y.F.
        • Chen J.
        • et al.
        Zika virus infects renal proximal tubular epithelial cells with prolonged persistency and cytopathic effects.
        Emerg Microbes Infect. 2017; 6: e77
        • Saxena V.
        • Bolling B.G.
        • Wang T.
        West Nile virus.
        J Clin Lab Med. 2017; 37: 243-252
        • Petersen L.R.
        • Carson P.J.
        • Biggerstaff B.J.
        • Custer B.
        • Borchardt S.M.
        • Busch M.P.
        Estimated cumulative incidence of West Nile virus infection in US adults, 1999-2010.
        Epidemiol Infect. 2013; 141: 591-595
        • Saxena V.
        • Xie G.
        • Li B.
        • et al.
        A hamster-derived West Nile virus isolate induces persistent renal infection in mice.
        Plos Negl Trop Dis. 2013; 7: e2275
        • Garcia M.N.
        • Hasbun R.
        • Murray K.O.
        Persistence of West Nile virus.
        Microbes Infect. 2015; 17: 163-168
        • Patel H.
        • Sander B.
        • Nelder M.P.
        Long-term sequelae of West Nile virus-related illness: a systematic review.
        Lancet Infect Dis. 2015; 15: 951-959
        • Barzon L.
        • Pacenti M.
        • Franchin E.
        • et al.
        Excretion of West Nile virus in urine during acute infection.
        J Infect Dis. 2013; 208: 1086-1092
        • Papa A.
        • Testa T.
        • Papadopoulou E.
        Detection of West Nile virus lineage 2 in the urine of acute human infections.
        J Med Virol. 2014; 86: 2142-2145
        • Murray K.O.
        • Kolodziej S.
        • Ronca S.E.
        • et al.
        Visualization of West Nile virus in urine sediment using electron microscopy and Immunogold up to nine Years Postinfection.
        Am J Trop Med Hyg. 2017; 97: 1913-1919
        • Tonry J.H.
        • Xiao S.Y.
        • Siirin M.
        • Chen H.
        • da Rosa A.P.
        • Tesh R.B.
        Persistent shedding of West Nile virus in urine of experimentally infected hamsters.
        Am J Trop Med Hyg. 2005; 72: 320-324
        • Murray K.O.
        • Baraniuk S.
        • Resnick M.
        • et al.
        Clinical investigation of hospitalized human cases of West Nile virus infection in Houston, Texas, 2002-2004.
        Vector Borne Zoonotic Dis. 2008; 8: 167-174
        • Huang C.
        • Slater B.
        • Rudd R.
        • et al.
        First isolation of West Nile virus from a patient with encephalitis in the United States.
        Emerg Infect Dis. 2002; 8: 1367-1371
        • Paddock C.D.
        • Nicholson W.L.
        • Bhatnagar J.
        • et al.
        Fatal hemorrhagic fever caused by West Nile virus in the United States.
        Clin Infect Dis. 2006; 42: 1527-1535
        • Brener Z.Z.
        • Harbord N.B.
        • Zhuravenko I.
        • et al.
        Acute renal failure in a patient with West Nile viral encephalitis.
        Nephrol Dial Transplant. 2007; 22: 662-663
        • Nolan M.S.
        • Podoll A.S.
        • Hause A.M.
        • Akers K.M.
        • Finkel K.W.
        • Murray K.O.
        Prevalence of chronic kidney disease and progression of disease over time among patients enrolled in the Houston West Nile virus cohort.
        PLoS One. 2012; 7: e40374
        • Mehta R.L.
        • Cerdá J.
        • Burdmann E.A.
        • et al.
        International Society of Nephrology's 0by25 initiative for acute kidney injury (zero preventable deaths by 2025): a human rights case for nephrology.
        Lancet. 2015; 385: 2616-2643
        • Ranjit S.
        • Ramanathan G.
        • Ramakrishnan B.
        • Kissoon N.
        Targeted interventions in critically ill children with severe dengue.
        Indian J Crit Care Med. 2018; 22: 154-161