Advertisement

Immune Dysfunction and Risk of Infection in Chronic Kidney Disease

  • Maaz Syed-Ahmed
    Affiliations
    Texas A&M Health Science Center College of Medicine, Scott & White Medical Center—Temple, Temple, TX
    Search for articles by this author
  • Mohanram Narayanan
    Correspondence
    Address correspondence to Mohanram Narayanan, MD, FASN, FNKF, Division of Nephrology and Hypertension, Scott & White Medical Center, 2601 Thornton Lane, Temple, TX 76502.
    Affiliations
    Texas A&M Health Science Center College of Medicine, Scott & White Medical Center—Temple, Temple, TX
    Search for articles by this author
      Cardiovascular disease and infections are directly or indirectly associated with an altered immune response, which leads to a high incidence of morbidity and mortality, and together, they account for up to 70% of all deaths among patients with chronic kidney dysfunction. Impairment of the normal reaction of the innate and adaptive immune systems in chronic kidney disease predisposes patients to an increased risk of infections, virus-associated cancers, and a diminished vaccine response. On the other hand, an abnormal, exaggerated reaction of the immune systems can also occur in this group of patients, resulting in increased production and decreased clearance of proinflammatory cytokines, which can lead to inflammation and its sequelae (eg, atherosclerotic cardiovascular disease). Epigenetically, modifications in hematopoietic stem cells involving a shift from lymphoid to myeloid cell lineage may underlie uremia-associated immunological senescence, which is not reversed by renal replacement therapy, including kidney transplantation. Measures aimed at attenuating the immune abnormalities in chronic kidney disease/end-stage renal disease should be an area of focused research as this could potentially lead to a better understanding and, thus, development of therapies that could reduce the disastrously high death rate in this patient population. The aim of the present article is to review the characteristics, causes, and mechanisms of the immune dysfunction related to chronic kidney disease.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic and Personal

      Subscribe:

      Subscribe to Advances in Chronic Kidney Disease
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Goldblum S.E.
        • Reed W.P.
        Host defenses and immunologic alterations associated with chronic hemodialysis.
        Ann Intern Med. 1980; 93: 597-613
        • US Renal Data System
        USRDS 2003 Annual Data Report: Atlas of End-Stage Renal Disease in the United States.
        (Available at:)
        https://www.usrds.org/atlas03.aspx
        Date accessed: May 15, 2018
        • Powe N.R.
        • Jaar B.
        • Furth S.L.
        • Hermann J.
        • Briggs W.
        Septicemia in dialysis patients: incidence, risk factors, and prognosis.
        Kidney Int. 1999; 55: 1081-1090
        • Sarnak M.J.
        • Jaber B.L.
        Mortality caused by sepsis in patients with end-stage renal disease compared with the general population.
        Kidney Int. 2000; 58: 1758-1764
        • Meyer T.W.
        • Hostetter T.H.
        Uremia.
        N Engl J Med. 2007; 357: 1316-1325
        • Witko-Sarsat V.
        • Friedlander M.
        • Nguyen Khoa T.
        • et al.
        Advanced oxidation protein products as novel mediators of inflammation and monocyte activation in chronic renal failure.
        J Immunol. 1998; 161: 2524-2532
        • Shankar A.
        • Syamala S.
        • Xiao J.
        • Muntner P.
        Relationship between plasma leptin level and chronic kidney disease.
        Int J Nephrol. 2012; 2012: 269532https://doi.org/10.1155/2012/269532
        • Adamczak M.
        • Chudek J.
        • Wiecek A.
        Adiponectin in patients with chronic kidney disease.
        Semin Dial. 2009; 22: 391-395
        • Krediet R.T.
        • Asghar S.S.
        • Koomen G.C.
        • Venneker G.T.
        • Struijk D.G.
        • Arisz L.
        Effects of renal failure on complement C3d levels.
        Nephron. 1991; 59: 41-45
        • Arici M.
        • Walls J.
        End-stage renal disease, atherosclerosis, and cardiovascular mortality: is C-reactive protein the missing link?.
        Kidney Int. 2001; 59: 407-414
        • Girndt M.
        • Ulrich C.
        • Kaul H.
        • et al.
        Uremia-associated immune defect: the IL-10-CRP axis.
        Kidney Int Suppl. 2003; 63: S76-S79
        • Girndt M.
        • Kaul H.
        • Sester U.
        • et al.
        Anti-inflammatory interleukin-10 genotype protects dialysis patients from cardiovascular events.
        Kidney Int. 2002; 62: 949-955
        • Meuer S.C.
        • Hauer M.
        • Kurz P.
        • Meyer zum Büschenfelde K.H.
        • Köhler H.
        Selective blockade of the antigen-receptor-mediated pathway of T cell activation in patients with impaired primary immune responses.
        J Clin Invest. 1987; 80: 743-749
        • Girndt M.
        • Köhler H.
        • Schiedhelm-Weick E.
        • Meyer zum Büschenfelde K.H.
        • Fleischer B.
        T cell activation defect in hemodialysis patients: evidence for a role of the B7/CD28 pathway.
        Kidney Int. 1993; 44: 359-365
        • Girndt M.
        • Sester M.
        • Sester U.
        • Kaul H.
        • Köhler H.
        Defective expression of B7-2 (CD86) on monocytes of dialysis patients correlates to the uremia-associated immune defect.
        Kidney Int. 2001; 59: 1382-1389
        • Meier P.
        • Golshayan D.
        • Blanc E.
        • Pascual M.
        • Burnier M.
        Oxidized LDL modulates apoptosis of regulatory T cells in patients with ESRD.
        J Am Soc Nephrol. 2009; 20 ([retracted in: J Am Soc Nephrol. 2014;25(3):645]): 1368-1384
        • Kato S.
        • Chmielewski M.
        • Honda H.
        • et al.
        Aspects of immune dysfunction in end-stage renal disease.
        Clin J Am Soc Nephrol. 2008; 3: 1526-1533
        • Satomura A.
        • Endo M.
        • Ohi H.
        • et al.
        Significant elevations in serum mannose-binding lectin levels in patients with chronic renal failure.
        Nephron. 2002; 92: 702-704
        • Satomura A.
        • Endo M.
        • Fujita T.
        • et al.
        Serum mannose-binding lectin levels in maintenance hemodialysis patients: impact on all-cause mortality.
        Nephron Clin Pract. 2006; 102: c93-c99
        • Ando M.
        • Lundkvist I.
        • Bergström J.
        • Lindholm B.
        Enhanced scavenger receptor expression in monocyte-macrophages in dialysis patients.
        Kidney Int. 1996; 49: 773-780
        • Ando M.
        • Gåfvels M.
        • Bergström J.
        • Lindholm B.
        • Lundkvist I.
        Uremic serum enhances scavenger receptor expression and activity in the human monocytic cell line U937.
        Kidney Int. 1997; 51: 785-792
        • Chmielewski M.
        • Bryl E.
        • Marzec L.
        • Aleksandrowicz E.
        • Witkowski J.M.
        • Rutkowski B.
        Expression of scavenger receptor CD36 in chronic renal failure patients.
        Artif Organs. 2005; 29: 608-614
        • De Nardo D.
        Toll-like receptors: activation, signalling and transcriptional modulation.
        Cytokine. 2015; 74: 181-189
        • Hochdörfer T.
        • Kuhny M.
        • Zorn C.N.
        • et al.
        Activation of the PI3K pathway increases TLR-induced TNF-α and IL-6 but reduces IL-1β production in mast cells.
        Cell Signal. 2011; 23: 866-875
        • Ando M.
        • Shibuya A.
        • Tsuchiya K.
        • Akiba T.
        • Nitta K.
        Reduced expression of Toll-like receptor 4 contributes to impaired cytokine response of monocytes in uremic patients.
        Kidney Int. 2006; 70: 358-362
        • Kuroki Y.
        • Tsuchida K.
        • Go I.
        • et al.
        A study of innate immunity in patients with end-stage renal disease: special reference to toll-like receptor-2 and -4 expression in peripheral blood monocytes of hemodialysis patients.
        Int J Mol Med. 2007; 19: 783-790
        • Eleftheriadis T.
        • Antoniadi G.
        • Liakopoulos V.
        • Kartsios C.
        • Stefanidis I.
        Disturbances of acquired immunity in hemodialysis patients.
        Semin Dial. 2007; 20: 440-451
        • Brinkkoetter P.T.
        • Marinaki S.
        • Gottmann U.
        • et al.
        Altered CD46-mediated T cell co-stimulation in haemodialysis patients.
        Clin Exp Immunol. 2005; 139: 534-541
        • Stachowski J.
        • Pollok M.
        • Burrichter H.
        • Spithaler C.
        • Baldamus C.A.
        Signalling via the TCR/CD3 antigen receptor complex in uremia is limited by the receptors number.
        Nephron. 1993; 64: 369-375
        • Meier P.
        • Dayer E.
        • Blanc E.
        • Wauters J.P.
        Early T cell activation correlates with expression of apoptosis markers in patients with end-stage renal disease.
        J Am Soc Nephrol. 2002; 13: 204-212
        • Litjens N.H.
        • van Druningen C.J.
        • Betjes M.G.
        Progressive loss of renal function is associated with activation and depletion of naive T lymphocytes.
        Clin Immunol. 2006; 118: 83-91
        • Betjes M.G.
        • Langerak A.W.
        • van der Spek A.
        • de Wit E.A.
        • Litjens N.H.
        Premature aging of circulating T cells in patients with end-stage renal disease.
        Kidney Int. 2011; 80: 208-217
        • Yoon J.W.
        • Gollapudi S.
        • Pahl M.V.
        • Vaziri N.D.
        Naïve and central memory T-cell lymphopenia in end-stage renal disease.
        Kidney Int. 2006; 70: 371-376
        • Stenvinkel P.
        • Ketteler M.
        • Johnson R.J.
        • et al.
        IL-10, IL-6, and TNF-alpha: central factors in the altered cytokine network of uremia—the good, the bad, and the ugly.
        Kidney Int. 2005; 67: 1216-1233
        • Ando M.
        • Shibuya A.
        • Yasuda M.
        • et al.
        Impairment of innate cellular response to in vitro stimuli in patients on continuous ambulatory peritoneal dialysis.
        Nephrol Dial Transpl. 2005; 20: 2497-2503
        • Hooper L.V.
        • Littman D.R.
        • Macpherson A.J.
        Interactions between the microbiota and the immune system.
        Science. 2012; 336: 1268-1273
        • Sekirov I.
        • Russell S.L.
        • Antunes L.C.
        • Finlay B.B.
        Gut microbiota in health and disease.
        Physiol Rev. 2010; 90: 859-904
        • Round J.L.
        • Mazmanian S.K.
        The gut microbiota shapes intestinal immune responses during health and disease.
        Nat Rev Immunol. 2009; 9: 313-323
        • Chow J.
        • Tang H.
        • Mazmanian S.K.
        Pathobionts of the gastrointestinal microbiota and inflammatory disease.
        Curr Opin Immunol. 2011; 23: 473-480
        • Wang F.
        • Zhang P.
        • Jiang H.
        • Cheng S.
        Gut bacterial translocation contributes to microinflammation in experimental uremia.
        Dig Dis Sci. 2012; 57: 2856-2862
        • Anders H.J.
        • Andersen K.
        • Stecher B.
        The intestinal microbiota, a leaky gut, and abnormal immunity in kidney disease.
        Kidney Int. 2013; 83: 1010-1016
        • Wang Z.
        • Klipfell E.
        • Bennett B.J.
        • et al.
        Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease.
        Nature. 2011; 472: 57-63
        • Maslowski K.M.
        • Mackay C.R.
        Diet, gut microbiota and immune responses.
        Nat Immunol. 2011; 12: 5-9
        • Stenvinkel P.
        Inflammation in end-stage renal disease—a fire that burns within.
        Contrib Nephrol. 2005; 149: 185-199
        • Stearns-Kurosawa D.J.
        • Osuchowski M.F.
        • Valentine C.
        • Kurosawa S.
        • Remick D.G.
        The pathogenesis of sepsis.
        Annu Rev Pathol. 2011; 6: 19-48
        • Heine G.H.
        • Ortiz A.
        • Massy Z.A.
        • et al.
        Monocyte subpopulations and cardiovascular risk in chronic kidney disease.
        Nat Rev Nephrol. 2012; 8: 362-369
        • McIntyre C.W.
        • Harrison L.E.
        • Eldehni M.T.
        • et al.
        Circulating endotoxemia: a novel factor in systemic inflammation and cardiovascular disease in chronic kidney disease.
        Clin J Am Soc Nephrol. 2011; 6: 133-141
        • Meijers R.W.
        • Litjens N.H.
        • de Wit E.A.
        • et al.
        Uremia causes premature ageing of the T cell compartment in end-stage renal disease patients [published online September 12, 2012].
        Immun Ageing. 2012; 9 (article no. 19. https://doi.org/10.1186/1742-4933-9-19)
        • Girndt M.
        • Pietsch M.
        • Köhler H.
        Tetanus immunization and its association to hepatitis B vaccination in patients with chronic renal failure.
        Am J Kidney Dis. 1995; 26: 454-460
        • Krüger S.
        • Müller-Steinhardt M.
        • Kirchner H.
        • Kreft B.
        A 5-year follow-up on antibody response after diphtheria and tetanus vaccination in hemodialysis patients.
        Am J Kidney Dis. 2001; 38: 1264-1270
        • Galli F.
        Protein damage and inflammation in uremia and dialysis patients.
        Nephrol Dial Transpl. 2007; 22: v20-v36
        • Verkade M.A.
        • van de Wetering J.
        • Klepper M.
        • Vaessen L.M.
        • Weimar W.
        • Betjes M.G.
        Peripheral blood dendritic cells and GM-CSF as an adjuvant for hepatitis B vaccination in hemodialysis patients.
        Kidney Int. 2004; 66: 614-621
        • Pesanti E.L.
        Immunologic defects and vaccination in patients with chronic renal failure.
        Infect Dis Clin North Am. 2001; 15: 813-832
        • Pecoits-Filho R.
        • Heimbürger O.
        • Bárany P.
        • et al.
        Associations between circulating inflammatory markers and residual renal function in CRF patients.
        Am J Kidney Dis. 2003; 41: 1212-1218
        • Vaziri N.D.
        Oxidative stress in uremia: nature, mechanisms, and potential consequences.
        Semin Nephrol. 2004; 24: 469-473
        • Libetta C.
        • Sepe V.
        • Esposito P.
        • Galli F.
        • Dal Canton A.
        Oxidative stress and inflammation: implications in uremia and hemodialysis.
        Clin Biochem. 2011; 44: 1189-1198
        • Dounousi E.
        • Papavasiliou E.
        • Makedou A.
        • et al.
        Oxidative stress is progressively enhanced with advancing stages of CKD.
        Am J Kidney Dis. 2006; 48: 752-760
        • Morena M.
        • Cristol J.P.
        • Senécal L.
        • Leray-Moragues H.
        • Krieter D.
        • Canaud B.
        Oxidative stress in hemodialysis patients: is NADPH oxidase complex the culprit?.
        Kidney Int. 2002; 61: S109-S114
        • Betjes M.G.
        • Litjens N.H.
        Chronic kidney disease and premature ageing of the adaptive immune response.
        Curr Urol Rep. 2015; 16 (article no. 471. https://doi.org/10.1007/s11934-014-0471-9)
        • McKay D.
        • Jameson J.
        Kidney transplantation and the ageing immune system.
        Nat Rev Nephrol. 2012; 8: 700-708
        • Macdougall I.C.
        • Cooper A.C.
        Erythropoietin resistance: the role of inflammation and pro-inflammatory cytokines.
        Nephrol Dial Transpl. 2002; 17: 39-43
        • Deicher R.
        • Ziai F.
        • Cohen G.
        • Müllner M.
        • Hörl W.H.
        High-dose parenteral iron sucrose depresses neutrophil intracellular killing capacity.
        Kidney Int. 2003; 64: 728-736
        • Sengoelge G.
        • Sunder-Plassmann G.
        • Hörl W.H.
        Potential risk for infection and atherosclerosis due to iron therapy.
        J Ren Nutr. 2005; 15: 105-110
        • Patruta S.I.
        • Hörl W.H.
        Iron and infection.
        Kidney Int. 1999; 69: S125-S130
        • Rocchetta F.
        • Solini S.
        • Mister M.
        • et al.
        Erythropoietin enhances immunostimulatory properties of immature dendritic cells.
        Clin Exp Immunol. 2011; 165: 202-210
        • Schömig M.
        • Ritz E.
        Management of disturbed calcium metabolism in uraemic patients: 1. Use of vitamin D metabolites.
        Nephrol Dial Transpl. 2000; 15: 18-24
        • Cantorna M.T.
        • Yu S.
        • Bruce D.
        The paradoxical effects of vitamin D on type 1 mediated immunity.
        Mol Aspects Med. 2008; 29: 369-675
        • Wahl P.
        • Wolf M.
        FGF23 in chronic kidney disease.
        Adv Exp Med Biol. 2012; 728: 107-125
        • Haag-Weber M.
        • Hörl W.H.
        Calcium-dependent neutrophil activation.
        Contrib Nephrol. 1992; 100: 269-285
        • Hörl W.H.
        • Haag-Weber M.
        • Mai B.
        • Massry S.G.
        Verapamil reverses abnormal [Ca2+]i and carbohydrate metabolism of PMNL of dialysis patients.
        Kidney Int. 1995; 47: 1741-1745
        • Kettritz R.
        • Falk R.J.
        • Jennette J.C.
        • Gaido M.L.
        Neutrophil superoxide release is required for spontaneous and FMLP-mediated but not for TNF alpha-mediated apoptosis.
        J Am Soc Nephrol. 1997; 8: 1091-1100
        • Lucas M.
        • Diaz P.
        Thapsigargin-induced calcium entry and apoptotic death of neutrophils are blocked by activation of protein kinase C.
        Pharmacology. 2001; 63: 191-196
        • Hu T.H.
        • Bei L.
        • Huang Y.F.
        • Shen X.
        [The relationship between fMLP induced neutrophil respiratory burst and the apoptosis of neutrophil].
        Shi Yan Sheng Wu Xue Bao. 1999; 32 ([in Chinese]): 359-366
        • Haag-Weber M.
        • Hörl W.H.
        Dysfunction of polymorphonuclear leukocytes in uremia.
        Semin Nephrol. 1996; 16: 192-201
        • Massry S.
        • Smogorzewski M.
        Dysfunction of polymorphonuclear leukocytes in uremia: role of parathyroid hormone.
        Kidney Int Suppl. 2001; 59: S195-S196
        • Smogorzwski M.
        • Massry S.G.
        Defects in B-cell function and metabolism in uremia: role of parathyroid hormone.
        Kidney Int Suppl. 2001; 59: S186-S189
        • Griveas I.
        • Visvardis G.
        • Papadopoulou D.
        • et al.
        Cellular immunity and levels of parathyroid hormone in uremic patients receiving hemodialysis.
        Ren Fail. 2005; 27: 275-278
        • Suzuki Y.
        • Gómez-Guerrero C.
        • Shirato I.
        • et al.
        Susceptibility to T cell-mediated injury in immune complex disease is linked to local activation of renin-angiotensin system: the role of NF-AT pathway.
        J Immunol. 2002; 169: 4136-4146
        • Egido J.
        Vasoactive hormones and renal sclerosis.
        Kidney Int. 1996; 49: 578-597
        • Ichikawa I.
        • Harris R.C.
        Angiotensin actions in the kidney: renewed insight into the old hormone.
        Kidney Int. 1991; 40: 583-596
        • Ruiz-Ortega M.
        • Lorenzo O.
        • Suzuki Y.
        • Rupérez M.
        • Egido J.
        Proinflammatory actions of angiotensins.
        Curr Opin Nephrol Hypertens. 2001; 10: 321-329
        • Suzuki Y.
        • Ruiz-Ortega M.
        • Egido J.
        Angiotensin II: a double-edged sword in inflammation.
        J Nephrol. 2000; 13: S101-S110
        • Jurewicz M.
        • McDermott D.H.
        • Sechler J.M.
        • et al.
        Human T and natural killer cells possess a functional renin-angiotensin system: further mechanisms of angiotensin II-induced inflammation.
        J Am Soc Nephrol. 2007; 18: 1093-1102
        • Nataraj C.
        • Oliverio M.I.
        • Mannon R.B.
        • et al.
        Angiotensin II regulates cellular immune responses through a calcineurin-dependent pathway.
        J Clin Invest. 1999; 104: 1693-1701
        • El Bekay R.
        • Alvarez M.
        • Monteseirin J.
        • et al.
        Oxidative stress is a critical mediator of the angiotensin II signal in human neutrophils: involvement of mitogen-activated protein kinase, calcineurin, and the transcription factor NF-kappa B.
        Blood. 2003; 102: 662-671