Advertisement

Inflammation, Immunity, and Oxidative Stress in Hypertension—Partners in Crime?

  • Ian R. Barrows
    Affiliations
    Department of Medicine, Georgetown University School of Medicine, Washington, DC

    Division of Kidney Diseases and Hypertension, George Washington University School of Medicine, Washington, DC
    Search for articles by this author
  • Ali Ramezani
    Affiliations
    Department of Medicine, Georgetown University School of Medicine, Washington, DC

    Division of Kidney Diseases and Hypertension, George Washington University School of Medicine, Washington, DC
    Search for articles by this author
  • Dominic S. Raj
    Correspondence
    Address correspondence to Dominic S. Raj, MD, Division of Kidney Diseases and Hypertension, George Washington University School of Medicine, Washington, DC.
    Affiliations
    Department of Medicine, Georgetown University School of Medicine, Washington, DC

    Division of Kidney Diseases and Hypertension, George Washington University School of Medicine, Washington, DC
    Search for articles by this author
      Hypertension is considered as the most common risk factor for cardiovascular disease. Inflammatory processes link hypertension and cardiovascular disease, and participate in their pathophysiology. In recent years, there has been an increase in research focused on unraveling the role of inflammation and immune activation in development and maintenance of hypertension. Although inflammation is known to be associated with hypertension, whether inflammation is a cause or effect of hypertension remains to be elucidated. This review describes the recent studies that link inflammation and hypertension and demonstrate the involvement of oxidative stress and endothelial dysfunction—two of the key processes in the development of hypertension. Etiology of hypertension, including novel immune cell subtypes, cytokines, toll-like receptors, inflammasomes, and gut microbiome, found to be associated with inflammation and hypertension are summarized and discussed. Most recent findings in this field are presented with special emphasis on potential of anti-inflammatory drugs and statins for treatment of hypertension.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Advances in Chronic Kidney Disease
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Mills K.T.
        • Bundy J.D.
        • Kelly T.N.
        • et al.
        Global disparities of hypertension prevalence and control: a systematic analysis of population-based studies from 90 countries.
        Circulation. 2016; 134: 441-450
        • Benjamin E.J.
        • Virani S.S.
        • Callaway C.W.
        • et al.
        Heart disease and stroke statistics-2018 update: a report from the American Heart Association.
        Circulation. 2018; 137: e67-e492
        • Fryar C.D.
        • Ostchega Y.
        • Hales C.M.
        • et al.
        Hypertension prevalence and control among adults: United States, 2015-2016.
        NCHS Data Brief. 2017; : 1-8
        • Kochanek K.D.
        • Murphy S.L.
        • Xu J.
        • Tejada-Vera B.
        Deaths: final data for 2014.
        Natl Vital Stat Rep. 2016; 65: 1-122
        • Palm N.W.
        • Medzhitov R.
        Pattern recognition receptors and control of adaptive immunity.
        Immunol Rev. 2009; 227: 221-233
        • Deretic V.
        • Saitoh T.
        • Akira S.
        Autophagy in infection, inflammation and immunity.
        Nat Rev Immunol. 2013; 13: 722-737
        • Murray P.J.
        Macrophage polarization.
        Annu Rev Physiol. 2017; 79: 541-566
        • Peyster E.
        • Chen J.
        • Feldman H.I.
        • et al.
        Inflammation and arterial stiffness in chronic kidney disease: findings from the CRIC study.
        Am J Hypertens. 2017; 30: 400-408
        • Kupper N.
        • Willemsen G.
        • Riese H.
        • et al.
        Heritability of daytime ambulatory blood pressure in an extended twin design.
        Hypertension. 2005; 45: 80-85
        • Levy D.
        • DeStefano A.L.
        • Larson M.G.
        • et al.
        Evidence for a gene influencing blood pressure on chromosome 17. Genome scan linkage results for longitudinal blood pressure phenotypes in subjects from the framingham heart study.
        Hypertension. 2000; 36: 477-483
        • Platt R.
        Heredity in hypertension.
        Q J Med. 1947; 16: 311
        • Corcoran A.C.
        The nature of essential hypertension.
        Lancet. 1959; 2: 1027-1030
        • Page I.H.
        The mosaic theory of arterial hypertension—its interpretation.
        Perspect Biol Med. 1967; 10: 325-333
        • Guyton A.C.
        • Coleman T.G.
        • Cowley Jr., A.V.
        • et al.
        Arterial pressure regulation. Overriding dominance of the kidneys in long-term regulation and in hypertension.
        Am J Med. 1972; 52: 584-594
        • White F.N.
        • Grollman A.
        Autoimmune factors associated with infarction of the kidney.
        Nephron. 1964; 1: 93-102
        • Okuda T.
        • Grollman A.
        Passive transfer of autoimmune induced hypertension in the rat by lymph node cells.
        Tex Rep Biol Med. 1967; 25: 257-264
        • Ba D.
        • Takeichi N.
        • Kodama T.
        • Kobayashi H.
        Restoration of T cell depression and suppression of blood pressure in spontaneously hypertensive rats (SHR) by thymus grafts or thymus extracts.
        J Immunol. 1982; 128: 1211-1216
        • Takeichi N.
        • Hamada J.
        • Takimoto M.
        • et al.
        Depression of T cell-mediated immunity and enhancement of autoantibody production by natural infection with microorganisms in spontaneously hypertensive rats (SHR).
        Microbiol Immunol. 1988; 32: 1235-1244
        • Olsen F.
        Transfer of arterial hypertension by splenic cells from DOCA-salt hypertensive and renal hypertensive rats to normotensive recipients.
        Acta Pathol Microbiol Scand C. 1980; 88: 1-5
        • Franco M.
        • Martinez F.
        • Quiroz Y.
        • et al.
        Renal angiotensin II concentration and interstitial infiltration of immune cells are correlated with blood pressure levels in salt-sensitive hypertension.
        Am J Physiol Regul Integr Comp Physiol. 2007; 293: R251-R256
        • Rodriguez-Iturbe B.
        • Vaziri N.D.
        • Herrera-Acosta J.
        • Johnson R.J.
        Oxidative stress, renal infiltration of immune cells, and salt-sensitive hypertension: all for one and one for all.
        Am J Physiol Ren Physiol. 2004; 286: F606-F616
        • Rodriguez-Iturbe B.
        • Pons H.
        • Quiroz Y.
        • et al.
        Mycophenolate mofetil prevents salt-sensitive hypertension resulting from angiotensin II exposure.
        Kidney Int. 2001; 59: 2222-2232
        • De C.C.
        • Amiri F.
        • Brassard P.
        • et al.
        Reduced vascular remodeling, endothelial dysfunction, and oxidative stress in resistance arteries of angiotensin II-infused macrophage colony-stimulating factor-deficient mice: evidence for a role in inflammation in angiotensin-induced vascular injury.
        Arterioscler Thromb Vasc Biol. 2005; 25: 2106-2113
        • Ko E.A.
        • Amiri F.
        • Pandey N.R.
        • et al.
        Resistance artery remodeling in deoxycorticosterone acetate-salt hypertension is dependent on vascular inflammation: evidence from m-CSF-deficient mice.
        Am J Physiol Heart Circ Physiol. 2007; 292: H1789-H1795
        • Wenzel P.
        • Knorr M.
        • Kossmann S.
        • et al.
        Lysozyme M-positive monocytes mediate angiotensin II-induced arterial hypertension and vascular dysfunction.
        Circulation. 2011; 124: 1370-1381
        • Crowley S.D.
        • Song Y.S.
        • Lin E.E.
        • et al.
        Lymphocyte responses exacerbate angiotensin II-dependent hypertension.
        Am J Physiol Regul Integr Comp Physiol. 2010; 298: R1089-R1097
        • Guzik T.J.
        • Hoch N.E.
        • Brown K.A.
        • et al.
        Role of the T cell in the genesis of angiotensin II induced hypertension and vascular dysfunction.
        J Exp Med. 2007; 204: 2449-2460
        • Youn J.C.
        • Yu H.T.
        • Lim B.J.
        • et al.
        Immunosenescent CD8+ T cells and C-X-C chemokine receptor type 3 chemokines are increased in human hypertension.
        Hypertension. 2013; 62: 126-133
        • Hoch N.E.
        • Guzik T.J.
        • Chen W.
        • et al.
        Regulation of T-cell function by endogenously produced angiotensin II.
        Am J Physiol Regul Integr Comp Physiol. 2009; 296: R208-R216
        • Jurewicz M.
        • McDermott D.H.
        • Sechler J.M.
        • et al.
        Human T and natural killer cells possess a functional renin-angiotensin system: further mechanisms of angiotensin II-induced inflammation.
        J Am Soc Nephrol. 2007; 18: 1093-1102
        • Kurokawa K.
        Kidney, salt, and hypertension: how and why.
        Kidney Int Suppl. 1996; 55: S46-S51
        • Madhur M.S.
        • Lob H.E.
        • McCann L.A.
        • et al.
        Interleukin 17 promotes angiotensin II-induced hypertension and vascular dysfunction.
        Hypertension. 2010; 55: 500-507
        • Onishi R.M.
        • Gaffen S.L.
        Interleukin-17 and its target genes: mechanisms of interleukin-17 function in disease.
        Immunology. 2010; 129: 311-321
        • Nguyen H.
        • Chiasson V.L.
        • Chatterjee P.
        • et al.
        Interleukin-17 causes Rho-kinase-mediated endothelial dysfunction and hypertension.
        Cardiovasc Res. 2013; 97: 696-704
        • Amador C.A.
        • Barrientos V.
        • Pena J.
        • et al.
        Spironolactone decreases DOCA-salt-induced organ damage by blocking the activation of T helper 17 and the downregulation of regulatory T lymphocytes.
        Hypertension. 2014; 63: 797-803
        • Vinh A.
        • Chen W.
        • Blinder Y.
        • et al.
        Inhibition and genetic ablation of the B7/CD28 T-cell costimulation axis prevents experimental hypertension.
        Circulation. 2010; 122: 2529-2537
        • Barbaro N.R.
        • Foss J.D.
        • Kryshtal D.O.
        • et al.
        Dendritic cell amiloride-sensitive channels mediate sodium-induced inflammation and hypertension.
        Cell Rep. 2017; 21: 1009-1020
        • Kirabo A.
        • Fontana V.
        • de Faria A.P.
        • et al.
        DC isoketal-modified proteins activate T cells and promote hypertension.
        J Clin Invest. 2014; 124: 4642-4656
        • Shevach E.M.
        Mechanisms of foxp3+ T regulatory cell-mediated suppression.
        Immunity. 2009; 30: 636-645
        • Barhoumi T.
        • Kasal D.A.
        • Li M.W.
        • et al.
        T regulatory lymphocytes prevent angiotensin II-induced hypertension and vascular injury.
        Hypertension. 2011; 57: 469-476
        • Kasal D.A.
        • Barhoumi T.
        • Li M.W.
        • et al.
        T regulatory lymphocytes prevent aldosterone-induced vascular injury.
        Hypertension. 2012; 59: 324-330
        • Kassan M.
        • Galan M.
        • Partyka M.
        • et al.
        Interleukin-10 released by CD4(+)CD25(+) natural regulatory T cells improves microvascular endothelial function through inhibition of NADPH oxidase activity in hypertensive mice.
        Arterioscler Thromb Vasc Biol. 2011; 31: 2534-2542
        • Xia M.
        • Abais J.M.
        • Koka S.
        • et al.
        Characterization and activation of NLRP3 inflammasomes in the renal medulla in mice.
        Kidney Blood Press Res. 2016; 41: 208-221
        • Omi T.
        • Kumada M.
        • Kamesaki T.
        • et al.
        An intronic variable number of tandem repeat polymorphisms of the cold-induced autoinflammatory syndrome 1 (CIAS1) gene modifies gene expression and is associated with essential hypertension.
        Eur J Hum Genet. 2006; 14: 1295-1305
        • Ruiz-Opazo N.
        • Lopez L.V.
        • Herrera V.L.
        The dual AngII/AVP receptor gene N119S/C163R variant exhibits sodium-induced dysfunction and cosegregates with salt-sensitive hypertension in the Dahl salt-sensitive hypertensive rat model.
        Mol Med. 2002; 8: 24-32
        • Mangan M.S.J.
        • Olhava E.J.
        • Roush W.R.
        • et al.
        Targeting the NLRP3 inflammasome in inflammatory diseases.
        Nat Rev Drug Discov. 2018; 17: 588-606
        • Kumar H.
        • Kawai T.
        • Akira S.
        Toll-like receptors and innate immunity.
        Biochem Biophys Res Commun. 2009; 388: 621-625
        • Watters T.M.
        • Kenny E.F.
        • O'Neill L.A.
        Structure, function and regulation of the Toll/IL-1 receptor adaptor proteins.
        Immunol Cell Biol. 2007; 85: 411-419
        • Bomfim G.F.
        • Echem C.
        • Martins C.B.
        • et al.
        Toll-like receptor 4 inhibition reduces vascular inflammation in spontaneously hypertensive rats.
        Life Sci. 2015; 122: 1-7
        • Liang C.F.
        • Liu J.T.
        • Wang Y.
        • et al.
        Toll-like receptor 4 mutation protects obese mice against endothelial dysfunction by decreasing NADPH oxidase isoforms 1 and 4.
        Arterioscler Thromb Vasc Biol. 2013; 33: 777-784
        • Tang P.C.
        • Qin L.
        • Zielonka J.
        • et al.
        MyD88-dependent, superoxide-initiated inflammation is necessary for flow-mediated inward remodeling of conduit arteries.
        J Exp Med. 2008; 205: 3159-3171
        • Ji Y.
        • Liu J.
        • Wang Z.
        • Liu N.
        Angiotensin II induces inflammatory response partly via toll-like receptor 4-dependent signaling pathway in vascular smooth muscle cells.
        Cell Physiol Biochem. 2009; 23: 265-276
        • Harwani S.C.
        • Chapleau M.W.
        • Legge K.L.
        • et al.
        Neurohormonal modulation of the innate immune system is proinflammatory in the prehypertensive spontaneously hypertensive rat, a genetic model of essential hypertension.
        Circ Res. 2012; 111: 1190-1197
        • Droge W.
        Free radicals in the physiological control of cell function.
        Physiol Rev. 2002; 82: 47-95
        • Vaziri N.D.
        • Rodriguez-Iturbe B.
        Mechanisms of disease: oxidative stress and inflammation in the pathogenesis of hypertension.
        Nat Clin Pract Nephrol. 2006; 2: 582-593
        • Canty Jr., T.G.
        • Boyle Jr., E.M.
        • Farr A.
        • et al.
        Oxidative stress induces NF-kappaB nuclear translocation without degradation of IkappaBalpha.
        Circulation. 1999; 100: II361-II364
        • Touyz R.M.
        • Schiffrin E.L.
        Increased generation of superoxide by angiotensin II in smooth muscle cells from resistance arteries of hypertensive patients: role of phospholipase D-dependent NAD(P)H oxidase-sensitive pathways.
        J Hypertens. 2001; 19: 1245-1254
        • Garg U.C.
        • Hassid A.
        Nitric oxide-generating vasodilators and 8-bromo-cyclic guanosine monophosphate inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle cells.
        J Clin Invest. 1989; 83: 1774-1777
        • Taniyama Y.
        • Griendling K.K.
        Reactive oxygen species in the vasculature: molecular and cellular mechanisms.
        Hypertension. 2003; 42: 1075-1081
        • Beckman J.S.
        • Koppenol W.H.
        Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly.
        Am J Physiol. 1996; 271: C1424-C1437
        • Vasquez-Vivar J.
        • Kalyanaraman B.
        • Martasek P.
        • et al.
        Superoxide generation by endothelial nitric oxide synthase: the influence of cofactors.
        Proc Natl Acad Sci U S A. 1998; 95: 9220-9225
        • Cave A.
        Selective targeting of NADPH oxidase for cardiovascular protection.
        Curr Opin Pharmacol. 2009; 9: 208-213
        • Kelly R.P.
        • Poo Y.K.
        • Isaac H.B.
        • et al.
        Lack of effect of acute oral ingestion of vitamin C on oxidative stress, arterial stiffness or blood pressure in healthy subjects.
        Free Radic Res. 2008; 42: 514-522
        • Mishra G.D.
        • Malik N.S.
        • Paul A.A.
        • et al.
        Childhood and adult dietary vitamin E intake and cardiovascular risk factors in mid-life in the 1946 British Birth Cohort.
        Eur J Clin Nutr. 2003; 57: 1418-1425
        • Firuzi O.
        • Miri R.
        • Tavakkoli M.
        • Saso L.
        Antioxidant therapy: current status and future prospects.
        Curr Med Chem. 2011; 18: 3871-3888
        • Li J.
        • Zhao F.
        • Wang Y.
        • et al.
        Gut microbiota dysbiosis contributes to the development of hypertension.
        Microbiome. 2017; 5: 14
        • Mell B.
        • Jala V.R.
        • Mathew A.V.
        • et al.
        Evidence for a link between gut microbiota and hypertension in the Dahl rat.
        Physiol Genomics. 2015; 47: 187-197
        • Yang T.
        • Santisteban M.M.
        • Rodriguez V.
        • et al.
        Gut dysbiosis is linked to hypertension.
        Hypertension. 2015; 65: 1331-1340
        • Pluznick J.L.
        • Protzko R.J.
        • Gevorgyan H.
        • et al.
        Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation.
        Proc Natl Acad Sci U S A. 2013; 110: 4410-4415
        • Maslowski K.M.
        • Vieira A.T.
        • Ng A.
        • et al.
        Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43.
        Nature. 2009; 461: 1282-1286
        • Mazmanian S.K.
        • Liu C.H.
        • Tzianabos A.O.
        • Kasper D.L.
        An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system.
        Cell. 2005; 122: 107-118
        • Segain J.P.
        • Raingeard dlB.
        • Bourreille A.
        • et al.
        Butyrate inhibits inflammatory responses through NFkappaB inhibition: implications for Crohn's disease.
        Gut. 2000; 47: 397-403
        • Le P.E.
        • Loison C.
        • Struyf S.
        • et al.
        Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation.
        J Biol Chem. 2003; 278: 25481-25489
        • Lanis J.M.
        • Alexeev E.E.
        • Curtis V.F.
        • et al.
        Tryptophan metabolite activation of the aryl hydrocarbon receptor regulates IL-10 receptor expression on intestinal epithelia.
        Mucosal Immunol. 2017; 10: 1133-1144
        • Schiering C.
        • Wincent E.
        • Metidji A.
        • et al.
        Feedback control of AHR signalling regulates intestinal immunity.
        Nature. 2017; 542: 242-245
        • Norlander A.E.
        • Saleh M.A.
        • Kamat N.V.
        • et al.
        Interleukin-17A regulates renal sodium transporters and renal injury in angiotensin II-induced hypertension.
        Hypertension. 2016; 68: 167-174
        • Ivanov II,
        • Atarashi K.
        • Manel N.
        • et al.
        Induction of intestinal Th17 cells by segmented filamentous bacteria.
        Cell. 2009; 139: 485-498
        • Wilck N.
        • Matus M.G.
        • Kearney S.M.
        • et al.
        Salt-responsive gut commensal modulates TH17 axis and disease.
        Nature. 2017; 551: 585-589
        • Dave L.A.
        • Hayes M.
        • Montoya C.A.
        • et al.
        Human gut endogenous proteins as a potential source of angiotensin-I-converting enzyme (ACE-I)-, renin inhibitory and antioxidant peptides.
        Peptides. 2016; 76: 30-44
        • Khalesi S.
        • Sun J.
        • Buys N.
        • Jayasinghe R.
        Effect of probiotics on blood pressure: a systematic review and meta-analysis of randomized, controlled trials.
        Hypertension. 2014; 64: 897-903
        • He F.J.
        • Li J.
        • MacGregor G.A.
        Effect of longer term modest salt reduction on blood pressure: Cochrane systematic review and meta-analysis of randomised trials.
        BMJ. 2013; 346: f1325
        • Mozaffarian D.
        • Fahimi S.
        • Singh G.M.
        • et al.
        Global sodium consumption and death from cardiovascular causes.
        N Engl J Med. 2014; 371: 624-634
        • Taylor R.S.
        • Ashton K.E.
        • Moxham T.
        • et al.
        Reduced dietary salt for the prevention of cardiovascular disease: a meta-analysis of randomized controlled trials (Cochrane review).
        Am J Hypertens. 2011; 24: 843-853
        • Sullivan J.M.
        Salt sensitivity. Definition, conception, methodology, and long-term issues.
        Hypertension. 1991; 17: I61-I68
        • Machnik A.
        • Neuhofer W.
        • Jantsch J.
        • et al.
        Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C-dependent buffering mechanism.
        Nat Med. 2009; 15: 545-552
        • Mattson D.L.
        Infiltrating immune cells in the kidney in salt-sensitive hypertension and renal injury.
        Am J Physiol Ren Physiol. 2014; 307: F499-F508
        • De M.C.
        • Das S.
        • Lund H.
        • Mattson D.L.
        T lymphocytes mediate hypertension and kidney damage in Dahl salt-sensitive rats.
        Am J Physiol Regul Integr Comp Physiol. 2010; 298: R1136-R1142
        • Crowley S.D.
        • Gurley S.B.
        • Oliverio M.I.
        • et al.
        Distinct roles for the kidney and systemic tissues in blood pressure regulation by the renin-angiotensin system.
        J Clin Invest. 2005; 115: 1092-1099
        • Elenkov I.J.
        • Wilder R.L.
        • Chrousos G.P.
        • Vizi E.S.
        The sympathetic nerve—an integrative interface between two supersystems: the brain and the immune system.
        Pharmacol Rev. 2000; 52: 595-638
        • Yu Y.
        • Zhang Z.H.
        • Wei S.G.
        • et al.
        Brain perivascular macrophages and the sympathetic response to inflammation in rats after myocardial infarction.
        Hypertension. 2010; 55: 652-659
        • Nance D.M.
        • Sanders V.M.
        Autonomic innervation and regulation of the immune system (1987-2007).
        Brain Behav Immun. 2007; 21: 736-745
        • Cardinale J.P.
        • Sriramula S.
        • Mariappan N.
        • et al.
        Angiotensin II-induced hypertension is modulated by nuclear factor-kappaB in the paraventricular nucleus.
        Hypertension. 2012; 59: 113-121
        • Shi Z.
        • Gan X.B.
        • Fan Z.D.
        • et al.
        Inflammatory cytokines in paraventricular nucleus modulate sympathetic activity and cardiac sympathetic afferent reflex in rats.
        Acta Physiol (Oxf). 2011; 203: 289-297
        • Sesso H.D.
        • Buring J.E.
        • Rifai N.
        • et al.
        C-reactive protein and the risk of developing hypertension.
        JAMA. 2003; 290: 2945-2951
        • Engstrom G.
        • Janzon L.
        • Berglund G.
        • et al.
        Blood pressure increase and incidence of hypertension in relation to inflammation-sensitive plasma proteins.
        Arterioscler Thromb Vasc Biol. 2002; 22: 2054-2058
        • Qi Y.
        • Aranda J.M.
        • Rodriguez V.
        • et al.
        Impact of antibiotics on arterial blood pressure in a patient with resistant hypertension—a case report.
        Int J Cardiol. 2015; 201: 157-158
        • Mattson D.L.
        • James L.
        • Berdan E.A.
        • Meister C.J.
        Immune suppression attenuates hypertension and renal disease in the Dahl salt-sensitive rat.
        Hypertension. 2006; 48: 149-156
        • Herrera J.
        • Ferrebuz A.
        • MacGregor E.G.
        • Rodriguez-Iturbe B.
        Mycophenolate mofetil treatment improves hypertension in patients with psoriasis and rheumatoid arthritis.
        J Am Soc Nephrol. 2006; 17: S218-S225
        • Ferro C.J.
        • Edwards N.C.
        • Hutchison C.
        • et al.
        Does immunosuppressant medication lower blood pressure and arterial stiffness in patients with chronic kidney disease? An observational study.
        Hypertens Res. 2011; 34: 113-119
        • Strazzullo P.
        • Kerry S.M.
        • Barbato A.
        • et al.
        Do statins reduce blood pressure? A meta-analysis of randomized, controlled trials.
        Hypertension. 2007; 49: 792-798
        • Langley R.G.
        • Elewski B.E.
        • Lebwohl M.
        • et al.
        Secukinumab in plaque psoriasis—results of two phase 3 trials.
        N Engl J Med. 2014; 371: 326-338
        • Mease P.J.
        • Genovese M.C.
        • Greenwald M.W.
        • et al.
        Brodalumab, an anti-IL17RA monoclonal antibody, in psoriatic arthritis.
        N Engl J Med. 2014; 370: 2295-2306
        • Zhao Q.
        • Hong D.
        • Zhang Y.
        • et al.
        Association between anti-TNF therapy for rheumatoid arthritis and hypertension: a meta-analysis of randomized controlled trials.
        Medicine (Baltimore). 2015; 94: e731
        • Kim M.K.
        • Sasaki S.
        • Sasazuki S.
        • et al.
        Lack of long-term effect of vitamin C supplementation on blood pressure.
        Hypertension. 2002; 40: 797-803
        • Ward N.C.
        • Wu J.H.
        • Clarke M.W.
        • et al.
        The effect of vitamin E on blood pressure in individuals with type 2 diabetes: a randomized, double-blind, placebo-controlled trial.
        J Hypertens. 2007; 25: 227-234
        • Ridker P.M.
        • Everett B.M.
        • Thuren T.
        • et al.
        Antiinflammatory therapy with Canakinumab for atherosclerotic disease.
        N Engl J Med. 2017; 377: 1119-1131
        • Nidorf S.M.
        • Eikelboom J.W.
        • Budgeon C.A.
        • Thompson P.L.
        Low-dose colchicine for secondary prevention of cardiovascular disease.
        J Am Coll Cardiol. 2013; 61: 404-410