Moving Forward With Biologics in Lupus Nephritis

  • Liliane Hobeika
    Lewis Katz School of Medicine, Section of Nephrology, Hypertension and Kidney Transplantation, Temple University, Philadelphia, PA
    Search for articles by this author
  • Lauren Ng
    Lewis Katz School of Medicine, Section of Nephrology, Hypertension and Kidney Transplantation, Temple University, Philadelphia, PA
    Search for articles by this author
  • Iris J. Lee
    Address correspondence to Iris J. Lee, MD, Lewis Katz School of Medicine, Temple University, Philadelphia, PA.
    Lewis Katz School of Medicine, Section of Nephrology, Hypertension and Kidney Transplantation, Temple University, Philadelphia, PA
    Search for articles by this author
      The majority of patients with systemic lupus erythematosus develop lupus nephritis (LN) which significantly contributes to increased risks of hospitalizations, ESRD, and death. Unfortunately, treatments for LN have not changed over the past 15 years. Despite continued efforts to elucidate the pathogenesis of LN, no new drugs have yet replaced the standard-of-care regimens of cyclophosphamide or mycophenolate mofetil plus high-dose corticosteroids. The significant limitations of standard-of-care are low complete response rates, risk of flares, and ongoing inflammation in the kidney leading to progressive renal dysfunction. Repeat and prolonged treatments are often needed to control disease, leading to a high level of severe side effects. The development of targeted drugs with better efficacy and safety are desperately needed. The rationale for targeting key immunologic pathways in LN continues to be strongly supported by basic and translational research and has generated the hope and excitement of testing these therapies in human LN. This review provides an overview of biologics studied to date in clinical trials of LN, discusses the potential reasons for their failure, and addresses the challenges moving forward.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic and Personal


      Subscribe to Advances in Chronic Kidney Disease
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Costenbader K.H.
        • Desai A.
        • Alarcón G.S.
        • et al.
        Trends in the incidence, demographics, and outcomes of end-stage renal disease due to lupus nephritis in the US from 1995 to 2006.
        Arthritis Rheum. 2011; 63: 1681-1688
        • Dasgupta A.
        • Ward M.M.
        • Tektonidou M.G.
        • et al.
        Risk of end-stage renal disease in patients with lupus nephritis, 1971-2015: a systematic review and Bayesian meta-analysis.
        Arthritis Rheum. 2016; 68: 1432-1441
        • Mok C.C.
        • Kwok R.C.L.
        • Yip P.S.F.
        Effect of renal disease on the standardized mortality ratio and life expectancy of patients with systemic lupus erythematosus.
        Arthritis Rheum. 2013; 65: 2154-2160
        • Pons-Estel G.J.
        • Zhang J.
        • Vilá L.M.
        • et al.
        Renal damage is the most important predictor of mortality within the damage index: data from LUMINA LXIV, a multiethnic US cohort.
        Rheumatology. 2008; 48: 542-545
        • Chertow G.M.
        • Fan D.
        • McCulloch C.E.
        • et al.
        Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization.
        N Engl J Med. 2004; 351: 1296-1305
        • Malvar A.
        • Pirruccio P.
        • Alberton V.
        • et al.
        Histologic versus clinical remission in proliferative lupus nephritis.
        Nephrol Dial Transplant. 2015; 32: 1338-1344
        • De Rosa M.
        • Azzato F.
        • Toblli J.E.
        • et al.
        A prospective observational cohort study highlights kidney biopsy findings of lupus nephritis patients in remission who flare following withdrawal of maintenance therapy.
        Kidney Int. 2018; 94: 788-794
        • Malvar A.
        • Lococo B.
        • Alberton V.
        • et al.
        The value of repeat kidney biopsy in quiescent Argentinian lupus nephritis patients.
        Lupus. 2014; 23: 840-847
        • Finck B.K.
        • Linsley P.S.
        • Wofsy D.
        Treatment of murine lupus with CTLA4Ig.
        Science. 1994; 265: 1225-1227
        • Kirk A.D.
        • Harlan D.M.
        • Armstrong N.N.
        • et al.
        CTLA4-Ig and anti-CD40 ligand prevent renal allograft rejection in primates.
        Proc Natl Acad Sci U S A. 1997; 94: 8789-8794
        • Wofsy D.
        Cutting edge: reversal of murine lupus nephritis with CTLA4Ig and cyclophosphamide.
        J Immunol. 2001; 166: 2913-2916
        • Banchereau R.
        • Hong S.
        • Cantarel B.
        • et al.
        Personalized immunomonitoring uncovers molecular networks that stratify lupus patients.
        Cell. 2016; 165: 551-565
        • Parikh S.V.
        • Malvar A.
        • Song H.
        • et al.
        Molecular imaging of the kidney in lupus nephritis to characterize response to treatment.
        Transl Res. 2017; 182: 1-13
        • Nowling T.K.
        • Gilkeson G.S.
        Mechanisms of tissue injury in lupus nephritis.
        Arthritis Res Ther. 2011; 13: 250
        • Rahman A.
        • Isenberg D.A.
        Systemic lupus erythematosus.
        N Engl J Med. 2008; 358: 929-939
        • Lech M.
        • Anders H.J.
        The pathogenesis of lupus nephritis.
        J Am Soc Nephrol. 2013; 24: 1357-1366
        • Ballestar E.
        Epigenetic alterations in autoimmune rheumatic diseases.
        Nat Rev Rheumatol. 2011; 7: 263-271
        • Lee H.S.
        • Bae S.C.
        What can we learn from genetic studies of systemic lupus erythematosus? Implications of genetic heterogeneity among populations in SLE.
        Lupus. 2010; 19: 1452-1459
        • Barton G.M.
        • Ewald S.E.
        • Barton G.M.
        Nucleic acid sensing Toll-like receptors in autoimmunity.
        Curr Opin Immunol. 2011; 23: 3-9
        • Marshak-Rothstein A.
        Toll-like receptors in systemic autoimmune disease.
        Nat Rev Immunol. 2006; 6: 823-835
        • Tsokos G.C.
        • Lo M.S.
        • Reis P.C.
        • et al.
        New insights into the immunopathogenesis of systemic lupus erythematosus.
        Nat Rev Rheumatol. 2016; 12: 716-730
        • Sanz I.
        • Lee F.E.-H.
        B cells as therapeutic targets in SLE.
        Nat Rev Rheumatol. 2010; 6: 326-337
        • Ahuja A.
        • Shupe J.
        • Dunn R.
        • et al.
        Depletion of B cells in murine lupus: efficacy and resistance.
        J Immunol. 2007; 179: 335-361
        • Bekar K.W.
        • Owen T.
        • Dunn R.
        • et al.
        Prolonged effects of short-term anti-CD20 B cell depletion therapy in murine systemic lupus erythematosus.
        Arthritis Rheum. 2010; 62: 2443-2457
        • Liu Z.
        • Zou Y.
        • Davidson A.
        Plasma cells in systemic lupus erythematosus: the long and short of it all.
        Eur J Immunol. 2011; 41: 588-591
        • Vital E.M.
        • Rawstron A.C.
        • Dass S.
        • et al.
        Reduced-dose rituximab in rheumatoid arthritis: efficacy depends on degree of B cell depletion.
        Arthritis Rheum. 2011; 63: 603-608
        • Dunham J.
        • Khan S.
        • Stansberry J.
        • et al.
        Variability in the biological response to anti-CD20 B cell depletion in systemic lupus erythaematosus.
        Ann Rheum Dis. 2008; 67: 1724-1731
        • Edwards J.C.
        • Cambridge G.
        • Ehrenstein M.R.
        • et al.
        An open study of B lymphocyte depletion in systemic lupus erythematosus.
        Arthritis Rheum. 2002; 46: 2673-2677
        • Mackay F.
        • Woodcock S.A.
        • Lawton P.
        • et al.
        Mice transgenic for BAFF develop lymphocytic disorders along with autoimmune manifestations.
        J Exp Med. 1999; 190: 1697-1710
        • Figgett W.A.
        • Deliyanti D.
        • Fairfax K.A.
        • et al.
        Deleting the BAFF receptor TACI protects against systemic lupus erythematosus without extensive reduction of B cell numbers.
        J Autoimmun. 2015; 61: 9-16
        • Benson M.J.
        • Dillon S.R.
        • Castigli E.
        • et al.
        Cutting edge: the dependence of plasma cells and independence of memory B cells on BAFF and APRIL.
        J Immunol. 2008; 180: 3655-3659
        • Huard B.
        • Tran N.L.
        • Benkhoucha M.
        • et al.
        Selective APRIL blockade delays systemic lupus erythematosus in mouse.
        PLoS One. 2012; 7: e31837
        • Guo S.
        • Jacob N.
        • Pawar R.D.
        • et al.
        Dispensability of APRIL to the development of systemic lupus erythematosus in NZM 2328 mice.
        Arthritis Rheum. 2012; 64: 1610-1619
        • Grammer A.C.
        • Lipsky P.E.
        B cell abnormalities in systemic lupus erythematosus.
        Arthritis Res Ther. 2003; 5: S22-S27
        • Petri M.
        • Stohl W.
        • Chatham W.
        • et al.
        Association of plasma B lymphocyte stimulator levels and disease activity in systemic lupus erythematosus.
        Arthritis Rheum. 2008; 58: 2453-2459
        • Isenberg D.A.
        • Ehrenstein M.R.
        • Carter L.M.
        • et al.
        Elevated serum B-cell activating factor (BAFF / BLyS) is associated with rising anti-dsDNA antibody levels and flare following B-cell depletion therapy in systemic lupus erythematosus.
        Arthritis Rheum. 2013; 65: 2672-2679
        • Rovin B.H.
        • Furie R.
        • Looney R.J.
        • et al.
        Efficacy and safety of rituximab in patients with active proliferative lupus nephritis: the lupus nephritis assessment with rituximab study.
        Arthritis Rheum. 2012; 64: 1215-1226
        • Hernández-Castro B.
        • Paredes-Saharopulos O.
        • Portales-Pérez D.
        • et al.
        Clinical and immunological effects of Rituximab in patients with lupus nephritis refractory to conventional therapy: a pilot study.
        Arthritis Res Ther. 2006; 8: R83
        • Sallée M.
        • Trolliet P.
        • Candon S.
        • et al.
        Rituximab in severe lupus nephritis: early B-cell depletion affects long-term renal outcome.
        Clin J Am Soc Nephrol. 2009; 4: 579-587
        • Neuwelt C.M.
        • Wallace D.J.
        • Shanahan J.C.
        • et al.
        Efficacy and safety of rituximab in moderately-to-severely active systemic lupus erythematosus: the randomized, double-blind, phase ii/iii systemic lupus erythematosus evaluation of rituximab trial.
        Arthritis Rheum. 2010; 62: 222-233
        • Liu Z.
        • Davidson A.
        BAFF and selection of autoreactive B cells.
        Trends Immunol. 2011; 32: 388-394
        • Cambridge G.
        • Isenberg D.A.
        • Edwards J.
        • et al.
        B cell depletion therapy in systemic lupus erythaematosus: relationships among serum B lymphocyte stimulator levels, autoantibody profile and clinical response.
        Ann Rheum Dis. 2008; 67: 1011-1016
        • Parikh S.V.
        • Rovin B.H.
        Current and emerging therapies for lupus nephritis.
        J Am Soc Nephrol. 2016; 27: 2929-2939
        • Gomez Mendez L.M.
        • Cascino M.D.
        • Garg J.
        • et al.
        Peripheral blood B cell depletion after Rituximab and complete response in lupus nephritis.
        Clin J Am Soc Nephrol. 2018; 13: 1502-1509
      1. Hoffmann-La Roche. A Study to evaluate the safety and efficacy of obinutuzumab compared with placebo in participants with lupus nephritis. In: Identifie: NCT02550652, 2015.

        • Rigby W.
        • Tony H.P.
        • Oelke K.
        • et al.
        Safety and efficacy of ocrelizumab in patients with rheumatoid arthritis and an inadequate response to methotrexate: results of a forty-eight–week randomized, double-blind, placebo-controlled, parallel-group phase III trial.
        Arthritis Rheum. 2012; 64: 350-359
        • Genovese M.C.
        • Kaine J.L.
        • Lowenstein M.B.
        • et al.
        Ocrelizumab, a humanized anti-CD20 monoclonal antibody, in the treatment of patients with rheumatoid arthritis: a phase I/II randomized, blinded, placebo-controlled, dose-ranging study.
        Arthritis Rheum. 2008; 58: 2652-2661
        • Huynh Du F.
        • Mills E.A.
        • MaoDraaye A.
        Next-generation anti-CD20 monoclonal antibodies in autoimmune disease treatment.
        Autoimmun Highlights. 2017; 8: 12
        • Rezvani A.R.
        • Maloney D.G.
        Rituximab resistance.
        Best Pract Res Clin Haematol. 2011; 24: 203-216
        • Mysler E.F.
        • Spindler A.J.
        • Guzman R.
        • et al.
        Efficacy and safety of ocrelizumab in active proliferative lupus nephritis: results from a randomized, double-blind, phase III study.
        Arthritis Rheum. 2013; 65: 2368-2379
        • Aranow C.
        • Dall’Era M.
        • Byron M.
        • et al.
        FRI0305 Phase 2 trial of induction therapy with anti-cd20 (RITUXIMAB) followed by maintenance therapy with anti-baff (BELIMUMAB) in patients with active lupus nephritis.
        Ann Rheum Dis. 2018; 77
        • Lazarus M.N.
        • Turner-Stokes T.
        • Chavele K.-M.
        • et al.
        B-cell numbers and phenotype at clinical relapse following rituximab therapy differ in SLE patients according to anti-dsDNA antibody levels.
        Rheumatology. 2012; 51: 1208-1215
        • Jacobi A.M.
        • Odendahl M.
        • Reiter K.
        • et al.
        Correlation between circulating CD27 high plasma cells and disease activity in patients with systemic lupus erythematosus.
        Arthritis Rheum. 2003; 48: 1332-1342
        • Ehrenstein M.R.
        • Wing C.
        The BAFFling effects of rituximab in lupus: danger ahead?.
        Nat Rev Rheumatol. 2016; 12: 367-372
        • Ashby D.
        • Pepper R.J.
        • Cook H.T.
        • et al.
        Prospective observational single-centre cohort study to evaluate the effectiveness of treating lupus nephritis with rituximab and mycophenolate mofetil but no oral steroids.
        Ann Rheum Dis. 2013; 72: 1280-1286
        • Rovin B.H.
        • Solomons N.
        • Pendergraft 3rd, W.F.
        • et al.
        A randomized, controlled double-blind study comparing the efficacy and safety of dose-ranging voclosporin with placebo in achieving remission in patients with active lupus nephritis.
        Kidney Int. 2019; 95: 219-231
        • Hahn B.H.
        Belimumab for systemic lupus erythematosus.
        N Engl J Med. 2013; 368: 1528-1535
        • Navarra S.V.
        • Guzmán R.M.
        • Gallacher A.E.
        • et al.
        Efficacy and safety of belimumab in patients with active systemic lupus erythematosus: a randomised, placebo-controlled, phase 3 trial.
        Lancet. 2011; 377: 721-731
        • Dooley M.A.
        • Houssiau F.
        • Aranow C.
        • et al.
        Effect of belimumab treatment on renal outcomes: results from the phase 3 belimumab clinical trials in patients with SLE.
        Lupus. 2013; 22: 63-72
      2. Human Genome Sciences Inc. Efficacy and safety of belimumab in patients with active lupus nephritis (BLISS-LN). In: Identifier: NCT01639339, 2012.

      3. EMD Serono. The efficacy and safety of atacicept in combination with mycophenolate mofetil used to treat lupus nephritis. In: Identifier: NCT00573157, 2016.

        • Ginzler E.M.
        • Wax S.
        • Rajeswaran A.
        • et al.
        Atacicept in combination with MMF and corticosteroids in lupus nephritis: results of a prematurely terminated trial.
        Arthritis Res Ther. 2012; 14: R33
        • Chen L.
        • Flies D.B.
        Molecular mechanisms of T cell co-stimulation and co-inhibition.
        Nat Rev Immunol. 2013; 13: 227-242
        • Sharpe A.H.
        • Abbas A.K.
        T-cell costimulation-biology, therapeutic potential, and challenges.
        N Engl J Med. 2006; 355: 973-975
        • Kim J.H.
        • Chappell C.P.
        • Ravindran R.
        • et al.
        CD28-B7 interaction modulates short- and long-lived plasma cell function.
        J Immunol. 2012; 189: 2758-2767
        • Lenschow D.J.
        • Walunas T.L.
        • Bluestone J.A.
        CD28/B7 system of T cell costimulation.
        Annu Rev Immunol. 1996; 14: 233-258
        • Genovese M.C.
        • Becker J.-C.
        • Schiff M.
        • et al.
        Abatacept for rheumatoid arthritis refractory to tumor necrosis factor α inhibition.
        N Engl J Med. 2005; 353: 1114-1123
        • Kremer J.M.
        • Genant H.K.
        • Moreland L.W.
        • et al.
        Effects of abatacept in patients with methotrexate-resistant active rheumatoid arthritis: a randomized trial.
        Ann Intern Med. 2006; 144: 865-876
        • Bluestone J.A.
        • Clair E.W.S.
        • Turka L.A.
        CTLA4Ig: bridging the basic immunology with clinical application.
        Immunity. 2006; 24: 233-238
        • Larsen C.P.
        • Elwood E.T.
        • Alexander D.Z.
        • et al.
        Long-term acceptance of skin and cardiac allografts after blocking CD40 and CD28 pathways.
        Nature. 1996; 381: 434-438
        • Salomon B.
        • Bluestone J.A.
        Complexities of CD28/B7: CTLA-4 costimulatory pathways in autoimmunity and transplantation.
        Ann Rev Immunol. 2001; 19: 225-252
        • Schiffer L.
        • Sinha J.
        • Wang X.
        • et al.
        Short term administration of costimulatory blockade and cyclophosphamide induces remission of systemic lupus erythematosus nephritis in NZB/W F1 mice by a mechanism downstream of renal immune complex deposition.
        J Immunol. 2003; 171: 489-497
        • ACCESS Trial Group
        Treatment of lupus nephritis with abatacept: the Abatacept and Cyclophosphamide Combination Efficacy and Safety Study.
        Arthritis Rheum. 2014; 66: 3096-3110
        • Nicholls K.
        • Cheng T.T.
        • Houssiau F.
        • et al.
        Efficacy and safety of Abatacept in lupus nephritis: a twelve-month, randomized, double-blind study.
        Arthritis Rheum. 2014; 66: 379-389
        • Wofsy D.
        • Hillson J.L.
        • Diamond B.
        Abatacept for lupus nephritis: alternative definitions of complete response support conflicting conclusions.
        Arthritis Rheum. 2012; 64: 3660-3665
      4. Bristol-Myers Squibb. Efficacy and safety study of abatacept to treat lupus nephritis. In: Identifier: NCT01714817, 2012.

        • Tsokos G.C.
        Systemic lupus erythematosus.
        N Engl J Med. 2011; 365: 2110-2121
        • Aringer M.
        • Smolen J.S.
        SLE-Complex cytokine effects in a complex autoimmune disease: tumor necrosis factor in systemic lupus erythematosus.
        Arthritis Res Ther. 2003; 5: 172-177
        • Rönnblom L.
        • Pascual V.
        The innate immune system in SLE: type I interferons and dendritic cells.
        Lupus. 2008; 17: 394-399
        • Guiducci C.
        • Gong M.
        • Xu Z.
        • et al.
        TLR recognition of self nucleic acids hampers glucocorticoid activity in lupus.
        Nature. 2010; 465: 937-941
        • Ivashkiv L.B.
        • Donlin L.T.
        Regulation of type I interferon responses.
        Nat Rev Immunol. 2014; 14: 36-49
        • Lichtman E.I.
        • Helfgott S.M.
        • Kriegel M.A.
        Emerging therapies for systemic lupus erythematosus—focus on targeting interferon-alpha.
        Clin Immunol. 2012; 143: 210-221
        • Liu Z.
        • Bethunaickan R.
        • Huang W.
        • et al.
        Interferon-α accelerates murine systemic lupus erythematosus in a T cell–dependent manner.
        Arthritis Rheum. 2011; 63: 219-229
        • Dall'era M.C.
        • Cardarelli P.M.
        • Preston B.T.
        • et al.
        Type I interferon correlates with serological and clinical manifestations of SLE.
        Ann Rheum Dis. 2005; 64: 1692-1697
        • Franek B.S.
        • Kelly J.A.
        • Kumabe M.
        • et al.
        Network analysis of associations between serum interferon-α activity, autoantibodies, and clinical features in systemic lupus erythematosus.
        Arthritis Rheum. 2011; 63: 1044-1053
        • Harley I.T.W.
        • Kaufman K.M.
        • Langefeld C.D.
        • et al.
        Genetic susceptibility to SLE: new insights from fine mapping and genome-wide association studies.
        Nat Rev Genet. 2009; 10: 285-290
        • Niewold T.B.
        • Hua J.
        • Lehman T.J.A.
        • et al.
        High serum IFN-α activity is a heritable risk factor for systemic lupus erythematosus.
        Genes Immunity. 2007; 8: 492-502
        • Peterson E.
        • Robertson A.D.
        • Emlen W.
        Serum and urinary interleukin-6 in systemic lupus erythematosus.
        Lupus. 1996; 5: 571-575
        • Grondal G.
        • Gunnarsson I.
        • Ronnelid J.
        • et al.
        Cytokine production, serum levels and disease activity in systemic lupus erythematosus.
        Clin Exp Rheumatol. 2000; 18: 565-570
        • Wu T.H.
        • Yu C.L.
        • Lu J.Y.
        • et al.
        Increased excretions of beta2-microglobulin, IL-6, and IL-8 and decreased excretion of Tamm-Horsfall glycoprotein in urine of patients with active lupus nephritis.
        Nephron J. 2000; 85: 207-214
        • Matsuo S.
        • Tamai H.
        • Sakamoto N.
        • et al.
        Distribution of interleukin-6 in normal and diseased human kidney.
        Lab Invest. 1991; 65: 61-66
        • Barbosa-Cisneros O.
        • Villalobos-Hurtado R.
        • Avalos-Díaz E.
        • et al.
        Renal expression of IL-6 and TNFα genes in lupus nephritis.
        Lupus. 1998; 7: 154-158
        • Kimura A.
        • Kishimoto T.
        IL-6: regulator of Treg/Th17 balance.
        Eur J Immunol. 2010; 40: 1830-1835
        • Takeno M.
        • Nagafuchi H.
        • Kaneko S.
        • et al.
        Autoreactive T cell clones from patients with systemic lupus erythematosus support polyclonal autoantibody production.
        J Immunol. 1997; 158: 3529-3538
        • Satoh M.
        • Shaw M.
        • Libert C.
        • et al.
        Interleukin 6 dependence of anti-DNA antibody production: evidence for two pathways of autoantibody formation in pristane-induced lupus.
        J Exp Med. 1998; 188: 985-990
        • Mihara M.
        • Takagi N.
        • Takeda Y.
        • et al.
        IL-6 receptor blockage inhibits the onset of autoimmune kidney disease in NZB/W F1 mice.
        Clin Exp Immunol. 1998; 112: 397-402
        • Linker-Israeli M.
        • Deans R.J.
        • Wallace D.J.
        • et al.
        Elevated levels of endogenous IL-6 in systemic lupus erythematosus. A putative role in pathogenesis.
        J Immunol. 1991; 147: 117-123
        • Sun K.H.
        • Yu C.L.
        • Tang S.J.
        • et al.
        Monoclonal anti-double-stranded DNA autoantibody stimulates the expression and release of IL-1β, IL-6, IL-8, IL-10 and TNF-α from normal human mononuclear cells involving in the lupus pathogenesis.
        Immunology. 2000; 99: 352-360
        • Tackey E.
        • Lipsky P.E.
        • Illei G.G.
        Rationale for interleukin-6 blockade in systemic lupus erythematosus.
        Lupus. 2004; 13: 339-343
        • Schett G.
        Physiological effects of modulating the interleukin-6 axis.
        Rheumatology. 2018; 57: ii43-ii50
        • Illei G.G.
        • Shirota Y.
        • Yarboro C.H.
        • et al.
        Tocilizumab in systemic lupus erythematosus: data on safety, preliminary efficacy, and impact on circulating plasma cells from an open-label phase I dosage-escalation study.
        Arthritis Rheum. 2010; 62: 542-552
        • Iwai A.
        • Naniwa T.
        • Tamechika S.
        • et al.
        Short-term add-on tocilizumab and intravenous cyclophosphamide exhibited a remission-inducing effect in a patient with systemic lupus erythematosus with refractory multiorgan involvements including massive pericarditis and glomerulonephritis.
        Mod Rheumatol. 2017; 27: 529-532
        • Maeshima K.
        • Ishii K.
        • Torigoe M.
        • et al.
        Successful tocilizumab and tacrolimus treatment in a patient with rheumatoid arthritis complicated by systemic lupus erythematosus.
        Lupus. 2012; 21: 1003-1006
        • Wallace D.J.
        • Strand V.
        • Merrill J.T.
        • et al.
        Efficacy and safety of an interleukin 6 monoclonal antibody for the treatment of systemic lupus erythematosus: a phase II dose-ranging randomised controlled trial.
        Ann Rheum Dis. 2017; 76: 534-542
        • Rovin B.H.
        • van Vollenhoven R.F.
        • Aranow C.
        • et al.
        A multicenter, randomized, double-blind, placebo-controlled study to evaluate the efficacy and safety of treatment with sirukumab (CNTO 136) in patients with active lupus nephritis.
        Arthritis Rheum. 2016; 68: 2174-2183
        • Kalunian K.C.
        Interferon-targeted therapy in systemic lupus erythematosus: is this an alternative to targeting B and T cells?.
        Lupus. 2016; 25: 1097-1101
        • Felten R.
        • Dervovic E.
        • Chasset F.
        • et al.
        The 2018 pipeline of targeted therapies under clinical development for Systemic Lupus Erythematosus: a systematic review of trials.
        Autoimmun Rev. 2018; 17: 781-790
        • Furie R.
        • Khamashta M.
        • Merrill J.T.
        • et al.
        Anifrolumab, an anti–interferon-α receptor monoclonal antibody, in moderate-to-severe systemic lupus erythematosus.
        Arthritis Rheum. 2017; 69: 376-386
        • Merrill J.T.
        • Furie R.
        • Werth V.P.
        • et al.
        Anifrolumab effects on rash and arthritis: impact of the type I interferon gene signature in the phase IIb MUSE study in patients with systemic lupus erythematosus.
        Lupus Sci Med. 2018; 5: e000284
      5. AstraZeneca. Efficacy and safety of two doses of anifrolumab compared to placebo in adult subjects with active systemic lupus erythematosus. In: Identifier: NCT02446912, 2015.

      6. AstraZeneca. Efficacy and safety of anifrolumab compared to placebo in adult subjects with active systemic lupus erythematosus. In Identifier: NCT02446899, 2015.

      7. 18 registered trials studying biologics for the treatment of lupus nephritis.
        (Available at:)
        • Merrill J.T.
        • Manzi S.
        • Aranow C.
        • et al.
        Lupus community panel proposals of optimising clinical trials: 2018.
        Lupus Sci Med. 2018; 5: e000258