Advertisement

Utilization of Biomarkers in Lupus Nephritis

  • Dawn J. Caster
    Correspondence
    Address correspondence to Dawn J. Caster, MD, Department of Medicine, University of Louisville School of Medicine, 570 South Preston Street, Baxter Research Building I, 102D, Louisville, KY 40202.
    Affiliations
    Department of Medicine, University of Louisville School of Medicine, Louisville, KY
    Search for articles by this author
  • David W. Powell
    Affiliations
    Department of Medicine, University of Louisville School of Medicine, Louisville, KY
    Search for articles by this author
      Lupus nephritis (LN) occurs in up to 60% of SLE patients, and is a leading cause of disability and death. Current treatment of LN consists of a combination of high dose corticosteroids that non-specifically decrease inflammation and cytotoxic medications that reduce auto-antibody production. That combination of therapy is associated with significant side effects while remission rates remain inadequate. Since the introduction of biologics into the pharmacological armamentarium, there has been hope for less toxic and more effective therapies for LN. Unfortunately, after multiple clinical trials, no biologic has improved efficacy over standard of care therapies for LN. This is likely, in part, due to disease heterogeneity. The utilization of biomarkers in LN may provide a way to stratify patients and guide therapeutic options. In this review, we summarize traditional and novel LN biomarkers and discuss how they may be used to diagnose, stratify, and guide therapy in patients with LN, bringing precision medicine to the forefront of LN therapy.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic and Personal

      Subscribe:

      Subscribe to Advances in Chronic Kidney Disease
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Tsokos G.C.
        Systemic lupus erythematosus.
        N Engl J Med. 2011; 365: 2110-2121
        • Bomback A.S.
        • Appel G.B.
        Updates on the treatment of lupus nephritis.
        J Am Soc Nephrol. 2010; 21: 2028-2035
        • Rovin B.H.
        • Caster D.J.
        • Cattran D.C.
        • et al.
        Management and treatment of glomerular diseases (part 2): conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference.
        Kidney Int. 2019; 95: 281-295
        • Davidson J.E.
        • Fu Q.
        • Ji B.
        • et al.
        Renal remission status and longterm renal survival in patients with lupus nephritis: a retrospective cohort analysis.
        J Rheumatol. 2018; 45: 671-677
        • Almaani S.
        • Meara A.
        • Rovin B.H.
        Update on lupus nephritis.
        Clin J Am Soc Nephrol. 2017; 12: 825-835
        • Tektonidou M.G.
        • Dasgupta A.
        • Ward M.M.
        Risk of end-stage renal disease in patients with lupus nephritis, 1971-2015: a systematic review and Bayesian meta-analysis.
        Arthritis Rheumatol. 2016; 68: 1432-1441
        • Barr R.G.
        • Seliger S.
        • Appel G.B.
        • et al.
        Prognosis in proliferative lupus nephritis: the role of socio-economic status and race/ethnicity.
        Nephrolo Dial Transplant. 2003; 18: 2039-2046
        • Costenbader K.H.
        • Desai A.
        • Alarcon G.S.
        • et al.
        Trends in the incidence, demographics, and outcomes of end-stage renal disease due to lupus nephritis in the US from 1995 to 2006.
        Arthritis Rheum. 2011; 63: 1681-1688
        • Feldman C.H.
        • Hiraki L.T.
        • Liu J.
        • et al.
        Epidemiology and sociodemographics of systemic lupus erythematosus and lupus nephritis among US adults with Medicaid coverage, 2000-2004.
        Arthritis Rheum. 2013; 65: 753-763
        • Sexton D.J.
        • Reule S.
        • Solid C.
        • Chen S.C.
        • Collins A.J.
        • Foley R.N.
        ESRD from lupus nephritis in the United States, 1995-2010.
        Clin J Am Soc Nephrol. 2015; 10: 251-259
        • Parikh S.V.
        • Rovin B.H.
        Current and emerging therapies for lupus nephritis.
        J Am Soc Nephrol. 2016; 27: 2929-2939
        • Biomarkers Definitions Working Group
        Biomarkers and surrogate endpoints: preferred definitions and conceptual framework.
        Clin Pharmacol Ther. 2001; 69: 89-95
        • Dall'Era M.
        • Cisternas M.G.
        • Smilek D.E.
        • et al.
        Predictors of long-term renal outcome in lupus nephritis trials: lessons learned from the Euro-Lupus Nephritis cohort.
        Arthritis Rheumatol. 2015; 67: 1305-1313
        • Tamirou F.
        • D'Cruz D.
        • Sangle S.
        • et al.
        Long-term follow-up of the MAINTAIN Nephritis Trial, comparing azathioprine and mycophenolate mofetil as maintenance therapy of lupus nephritis.
        Ann Rheum Dis. 2016; 75: 526-531
        • Ugolini-Lopes M.R.
        • Seguro L.P.C.
        • Castro M.X.F.
        • et al.
        Early proteinuria response: a valid real-life situation predictor of long-term lupus renal outcome in an ethnically diverse group with severe biopsy-proven nephritis?.
        Lupus Sci Med. 2017; 4: e000213
        • Olson S.W.
        • Lee J.J.
        • Prince L.K.
        • et al.
        Elevated subclinical double-stranded DNA antibodies and future proliferative lupus nephritis.
        Clin J Am Soc Nephrol. 2013; 8: 1702-1708
        • Mannik M.
        • Merrill C.E.
        • Stamps L.D.
        • Wener M.H.
        Multiple autoantibodies form the glomerular immune deposits in patients with systemic lupus erythematosus.
        J Rheumatol. 2003; 30: 1495-1504
        • Matrat A.
        • Veysseyre-Balter C.
        • Trolliet P.
        • et al.
        Simultaneous detection of anti-C1q and anti-double stranded DNA autoantibodies in lupus nephritis: predictive value for renal flares.
        Lupus. 2011; 20: 28-34
        • Julkunen H.
        • Ekblom-Kullberg S.
        • Miettinen A.
        Nonrenal and renal activity of systemic lupus erythematosus: a comparison of two anti-C1q and five anti-dsDNA assays and complement C3 and C4.
        Rheumatol Int. 2012; 32: 2445-2451
        • Moroni G.
        • Radice A.
        • Giammarresi G.
        • et al.
        Are laboratory tests useful for monitoring the activity of lupus nephritis? A 6-year prospective study in a cohort of 228 patients with lupus nephritis.
        Ann Rheum Dis. 2009; 68: 234-237
        • Thielens N.M.
        • Tedesco F.
        • Bohlson S.S.
        • Gaboriaud C.
        • Tenner A.J.
        C1q: a fresh look upon an old molecule.
        Mol Immunol. 2017; 89: 73-83
        • Orbai A.M.
        • Truedsson L.
        • Sturfelt G.
        • et al.
        Anti-C1q antibodies in systemic lupus erythematosus.
        Lupus. 2015; 24: 42-49
        • Yang X.W.
        • Tan Y.
        • Yu F.
        • Zhao M.H.
        Combination of anti-C1q and anti-dsDNA antibodies is associated with higher renal disease activity and predicts renal prognosis of patients with lupus nephritis.
        Nephrol Dial, Transplant. 2012; 27: 3552-3559
        • Bock M.
        • Heijnen I.
        • Trendelenburg M.
        Anti-C1q antibodies as a follow-up marker in SLE patients.
        PLoS One. 2015; 10: e0123572
        • Holers V.M.
        Anti-C1q autoantibodies amplify pathogenic complement activation in systemic lupus erythematosus.
        J Clin Invest. 2004; 114: 616-619
        • Thanei S.
        • Vanhecke D.
        • Trendelenburg M.
        Anti-C1q autoantibodies from systemic lupus erythematosus patients activate the complement system via both the classical and lectin pathways.
        Clin Immunol. 2015; 160: 180-187
        • Thanei S.
        • Trendelenburg M.
        Anti-C1q autoantibodies from patients with systemic lupus erythematosus induce C1q production by macrophages.
        J Leukoc Biol. 2017; 101: 481-491
        • Trouw L.A.
        • Groeneveld T.W.
        • Seelen M.A.
        • et al.
        Anti-C1q autoantibodies deposit in glomeruli but are only pathogenic in combination with glomerular C1q-containing immune complexes.
        J Clin Invest. 2004; 114: 679-688
        • Esdaile J.M.
        • Joseph L.
        • Abrahamowicz M.
        • Li Y.
        • Danoff D.
        • Clarke A.E.
        Routine immunologic tests in systemic lupus erythematosus: is there a need for more studies?.
        J Rheumatol. 1996; 23: 1891-1896
        • Ricker D.M.
        • Hebert L.A.
        • Rohde R.
        • Sedmak D.D.
        • Lewis E.J.
        • Clough J.D.
        Serum C3 levels are diagnostically more sensitive and specific for systemic lupus erythematosus activity than are serum C4 levels. The Lupus Nephritis Collaborative Study Group.
        Am J Kidney Dis. 1991; 18: 678-685
        • Ho A.
        • Barr S.G.
        • Magder L.S.
        • Petri M.
        A decrease in complement is associated with increased renal and hematologic activity in patients with systemic lupus erythematosus.
        Arthritis Rheum. 2001; 44: 2350-2357
        • Birmingham D.J.
        • Irshaid F.
        • Nagaraja H.N.
        • et al.
        The complex nature of serum C3 and C4 as biomarkers of lupus renal flare.
        Lupus. 2010; 19: 1272-1280
        • Fatemi A.
        • Samadi G.
        • Sayedbonakdar Z.
        • Smiley A.
        Anti-C1q antibody in patients with lupus nephritic flare: 18-month follow-up and a nested case-control study.
        Mod Rheumatol. 2016; 26: 233-239
        • Seret G.
        • Canas F.
        • Pougnet-Di Costanzo L.
        • et al.
        Anti-alpha-actinin antibodies are part of the anti-cell membrane antibody spectrum that characterize patients with lupus nephritis.
        J Autoimmun. 2015; 61: 54-61
        • Zhang W.H.
        • Pan H.F.
        • Zhao X.F.
        • Ye D.Q.
        • Li X.P.
        • Xu J.H.
        Anti-alpha-actinin antibodies in relation to new-onset systemic lupus erythematosus and lupus nephritis.
        Mol Biol Rep. 2010; 37: 1341-1345
        • Becker-Merok A.
        • Kalaaji M.
        • Haugbro K.
        • et al.
        Alpha-actinin-binding antibodies in relation to systemic lupus erythematosus and lupus nephritis.
        Arthritis Res Ther. 2006; 8: R162
        • Bruschi M.
        • Sinico R.A.
        • Moroni G.
        • et al.
        Glomerular autoimmune multicomponents of human lupus nephritis in vivo: alpha-enolase and annexin AI.
        J Am Soc Nephrol. 2014; 25: 2483-2498
        • Yung S.
        • Cheung K.F.
        • Zhang Q.
        • Chan T.M.
        Anti-dsDNA antibodies bind to mesangial annexin II in lupus nephritis.
        J Am Soc Nephrol. 2010; 21: 1912-1927
        • Caster D.J.
        • Korte E.A.
        • Merchant M.L.
        • et al.
        Autoantibodies targeting glomerular annexin A2 identify patients with proliferative lupus nephritis.
        Proteomics Clin Appl. 2015; 9: 1012-1020
        • Cheung K.F.
        • Yung S.
        • Chau M.K.
        • et al.
        Annexin II-binding immunoglobulins in patients with lupus nephritis and their correlation with disease manifestations.
        Clin Sci (Lond). 2017; 131: 653-671
        • Kim H.J.
        • Hong Y.H.
        • Kim Y.J.
        • et al.
        Anti-heparan sulfate antibody and functional loss of glomerular heparan sulfate proteoglycans in lupus nephritis.
        Lupus. 2017; 26: 815-824
        • Krishnan M.R.
        • Wang C.
        • Marion T.N.
        Anti-DNA autoantibodies initiate experimental lupus nephritis by binding directly to the glomerular basement membrane in mice.
        Kidney Int. 2012; 82: 184-192
        • Olin A.I.
        • Morgelin M.
        • Truedsson L.
        • Sturfelt G.
        • Bengtsson A.A.
        Pathogenic mechanisms in lupus nephritis: nucleosomes bind aberrant laminin beta1 with high affinity and colocalize in the electron-dense deposits.
        Arthritis Rheumatol. 2014; 66: 397-406
        • Mjelle J.E.
        • Rekvig O.P.
        • Fenton K.A.
        Nucleosomes possess a high affinity for glomerular laminin and collagen IV and bind nephritogenic antibodies in murine lupus-like nephritis.
        Ann Rheum Dis. 2007; 66: 1661-1668
        • Mostoslavsky G.
        • Fischel R.
        • Yachimovich N.
        • et al.
        Lupus anti-DNA autoantibodies cross-react with a glomerular structural protein: a case for tissue injury by molecular mimicry.
        Eur J Immunol. 2001; 31: 1221-1227
        • Zou X.
        • Cheng H.
        • Zhang Y.
        • Fang C.
        • Xia Y.
        The antigen-binding fragment of anti-double-stranded DNA IgG enhances F-actin formation in mesangial cells by binding to alpha-actinin-4.
        Exp Biol Med (Maywood). 2012; 237: 1023-1031
        • Zhao Z.
        • Deocharan B.
        • Scherer P.E.
        • Ozelius L.J.
        • Putterman C.
        Differential binding of cross-reactive anti-DNA antibodies to mesangial cells: the role of alpha-actinin.
        J Immunol. 2006; 176: 7704-7714
        • Deocharan B.
        • Zhou Z.
        • Antar K.
        • et al.
        Alpha-actinin immunization elicits anti-chromatin autoimmunity in nonautoimmune mice.
        J Immunol. 2007; 179: 1313-1321
        • Renaudineau Y.
        • Deocharan B.
        • Jousse S.
        • Renaudineau E.
        • Putterman C.
        • Youinou P.
        Anti-alpha-actinin antibodies: a new marker of lupus nephritis.
        Autoimmun Rev. 2007; 6: 464-468
        • Manson J.J.
        • Ma A.
        • Rogers P.
        • et al.
        Relationship between anti-dsDNA, anti-nucleosome and anti-alpha-actinin antibodies and markers of renal disease in patients with lupus nephritis: a prospective longitudinal study.
        Arthritis Res Ther. 2009; 11: R154
        • Babaei M.
        • Rezaieyazdi Z.
        • Saadati N.
        • et al.
        Serum alpha-actinin antibody status in systemic lupus erythematosus and its potential in the diagnosis of lupus nephritis.
        Caspian J Intern Med. 2016; 7: 272-277
        • Bruschi M.
        • Petretto A.
        • Vaglio A.
        • Santucci L.
        • Candiano G.
        • Ghiggeri G.M.
        Annexin A1 and autoimmunity: from basic science to clinical applications.
        Int J Mol Sci. 2018; 19 (Published May 3, 2018. https://doi.org/10.3390/ijms19051348): E1348
        • Iaccarino L.
        • Ghirardello A.
        • Canova M.
        • et al.
        Anti-annexins autoantibodies: their role as biomarkers of autoimmune diseases.
        Autoimmun Rev. 2011; 10: 553-558
        • Bonanni A.
        • Vaglio A.
        • Bruschi M.
        • et al.
        Multi-antibody composition in lupus nephritis: isotype and antigen specificity make the difference.
        Autoimmun Rev. 2015; 14: 692-702
        • Bharadwaj A.
        • Bydoun M.
        • Holloway R.
        • Waisman D.
        Annexin A2 heterotetramer: structure and function.
        Int J Mol Sci. 2013; 14: 6259-6305
        • Pratesi F.
        • Moscato S.
        • Sabbatini A.
        • Chimenti D.
        • Bombardieri S.
        • Migliorini P.
        Autoantibodies specific for alpha-enolase in systemic autoimmune disorders.
        J Rheumatol. 2000; 27: 109-115
        • Bruschi M.
        • Carnevali M.L.
        • Murtas C.
        • et al.
        Direct characterization of target podocyte antigens and auto-antibodies in human membranous glomerulonephritis: alfa-enolase and borderline antigens.
        J Proteomics. 2011; 74: 2008-2017
        • Kimura Y.
        • Miura N.
        • Debiec H.
        • et al.
        Circulating antibodies to alpha-enolase and phospholipase A2 receptor and composition of glomerular deposits in Japanese patients with primary or secondary membranous nephropathy.
        Clin Exp Nephrol. 2017; 21: 117-126
        • Diaz-Ramos A.
        • Roig-Borrellas A.
        • Garcia-Melero A.
        • Lopez-Alemany R.
        Alpha-enolase, a multifunctional protein: its role on pathophysiological situations.
        J Biomed Biotechnol. 2012; 2012: 156795
        • Li M.
        • Li J.
        • Wang J.
        • Li Y.
        • Yang P.
        Serum level of anti-alpha-enolase antibody in untreated systemic lupus erythematosus patients correlates with 24-hour urine protein and D-dimer.
        Lupus. 2018; 27: 139-142
        • Jones B.
        Lupus nephritis: nucleosomes trapped by aberrantly expressed laminin-beta1.
        Nat Rev Nephrol. 2014; 10: 4
        • Hanrotel-Saliou C.
        • Segalen I.
        • Le Meur Y.
        • Youinou P.
        • Renaudineau Y.
        Glomerular antibodies in lupus nephritis.
        Clin Rev Allergy Immunol. 2011; 40: 151-158
        • van Bavel C.C.
        • van der Vlag J.
        • Berden J.H.
        Glomerular binding of anti-dsDNA autoantibodies: the dispute resolved?.
        Kidney Int. 2007; 71: 600-601
        • Yuan M.
        • Tan Y.
        • Pang Y.
        • et al.
        Anti-pentraxin 3 auto-antibodies might be protective in lupus nephritis: a large cohort study.
        Ren Fail. 2017; 39: 465-473
        • Doria A.
        • Gatto M.
        Nephritogenic-antinephritogenic antibody network in lupus glomerulonephritis.
        Lupus. 2012; 21: 1492-1496
        • Gatto M.
        • Iaccarino L.
        • Ghirardello A.
        • Punzi L.
        • Doria A.
        Clinical and pathologic considerations of the qualitative and quantitative aspects of lupus nephritogenic autoantibodies: a comprehensive review.
        J Autoimmun. 2016; 69: 1-11
        • Gatto M.
        • Ghirardello A.
        • Luisetto R.
        • et al.
        Immunization with pentraxin 3 (PTX3) leads to anti-PTX3 antibody production and delayed lupus-like nephritis in NZB/NZW F1 mice.
        J Autoimmun. 2016; 74: 208-216
        • Singer E.
        • Marko L.
        • Paragas N.
        • et al.
        Neutrophil gelatinase-associated lipocalin: pathophysiology and clinical applications.
        Acta Physiol (Oxf). 2013; 207: 663-672
        • Suzuki M.
        • Wiers K.M.
        • Klein-Gitelman M.S.
        • et al.
        Neutrophil gelatinase-associated lipocalin as a biomarker of disease activity in pediatric lupus nephritis.
        Pediatr Nephrol. 2008; 23: 403-412
        • Rubinstein T.
        • Pitashny M.
        • Levine B.
        • et al.
        Urinary neutrophil gelatinase-associated lipocalin as a novel biomarker for disease activity in lupus nephritis.
        Rheumatology. (oxford). 2010; 49: 960-971
        • Satirapoj B.
        • Kitiyakara C.
        • Leelahavanichkul A.
        • Avihingsanon Y.
        • Supasyndh O.
        Urine neutrophil gelatinase-associated lipocalin to predict renal response after induction therapy in active lupus nephritis.
        BMC Nephrol. 2017; 18: 263
        • Nozaki Y.
        • Kinoshita K.
        • Yano T.
        • et al.
        Estimation of kidney injury molecule-1 (Kim-1) in patients with lupus nephritis.
        Lupus. 2014; 23: 769-777
        • Lv W.
        • Booz G.W.
        • Wang Y.
        • Fan F.
        • Roman R.J.
        Inflammation and renal fibrosis: recent developments on key signaling molecules as potential therapeutic targets.
        Eur J Pharmacol. 2018; 820: 65-76
        • Kulkarni O.
        • Pawar R.D.
        • Purschke W.
        • et al.
        Spiegelmer inhibition of CCL2/MCP-1 ameliorates lupus nephritis in MRL-(Fas)lpr mice.
        J Am Soc Nephrol. 2007; 18: 2350-2358
        • Gupta R.
        • Yadav A.
        • Aggarwal A.
        Longitudinal assessment of monocyte chemoattractant protein-1 in lupus nephritis as a biomarker of disease activity.
        Clin Rheumatol. 2016; 35: 2707-2714
        • Rovin B.H.
        • Song H.
        • Birmingham D.J.
        • Hebert L.A.
        • Yu C.Y.
        • Nagaraja H.N.
        Urine chemokines as biomarkers of human systemic lupus erythematosus activity.
        J Am Soc Nephrol. 2005; 16: 467-473
        • Singh R.G.
        • Usha
        • Rathore S.S.
        • Behura S.K.
        • Singh N.K.
        Urinary MCP-1 as diagnostic and prognostic marker in patients with lupus nephritis flare.
        Lupus. 2012; 21: 1214-1218
        • Lee Y.H.
        • Song G.G.
        Urinary MCP-1 as a biomarker for lupus nephritis: a meta-analysis.
        Z Rheumatol. 2017; 76: 357-363
        • Kaplan M.J.
        • Lewis E.E.
        • Shelden E.A.
        • et al.
        The apoptotic ligands TRAIL, TWEAK, and Fas ligand mediate monocyte death induced by autologous lupus T cells.
        J Immunol. 2002; 169: 6020-6029
        • Michaelson J.S.
        • Wisniacki N.
        • Burkly L.C.
        • Putterman C.
        Role of TWEAK in lupus nephritis: a bench-to-bedside review.
        J Autoimmun. 2012; 39: 130-142
        • Schwartz N.
        • Rubinstein T.
        • Burkly L.C.
        • et al.
        Urinary TWEAK as a biomarker of lupus nephritis: a multicenter cohort study.
        Arthritis Res Ther. 2009; 11: R143
        • Dong X.W.
        • Zheng Z.H.
        • Ding J.
        • et al.
        Combined detection of uMCP-1 and uTWEAK for rapid discrimination of severe lupus nephritis.
        Lupus. 2018; 27: 971-981
        • Brunner H.I.
        • Bennett M.R.
        • Abulaban K.
        • et al.
        Development of a novel renal activity index of lupus nephritis in children and young adults.
        Arthritis Care Res. 2016; 68: 1003-1011
        • Gulati G.
        • Bennett M.R.
        • Abulaban K.
        • et al.
        Prospective validation of a novel renal activity index of lupus nephritis.
        Lupus. 2017; 26: 927-936
        • Abulaban K.M.
        • Song H.
        • Zhang X.
        • et al.
        Predicting decline of kidney function in lupus nephritis using urine biomarkers.
        Lupus. 2016; 25: 1012-1018
      1. Chapter 12: lupus nephritis.
        Kidney Int Suppl (2011). 2012; 2: 221-232
        • Hahn B.H.
        • McMahon M.A.
        • Wilkinson A.
        • et al.
        American College of Rheumatology guidelines for screening, treatment, and management of lupus nephritis.
        Arthritis Care Res. 2012; 64: 797-808
        • Wolf B.J.
        • Spainhour J.C.
        • Arthur J.M.
        • Janech M.G.
        • Petri M.
        • Oates J.C.
        Development of biomarker models to predict outcomes in lupus nephritis.
        Arthritis Rheumatol. 2016; 68: 1955-1963
        • Alperin J.M.
        • Ortiz-Fernandez L.
        • Sawalha A.H.
        Monogenic lupus: a developing paradigm of disease.
        Front Immunol. 2018; 9: 2496
        • Macedo A.C.
        • Isaac L.
        Systemic lupus erythematosus and deficiencies of early components of the complement classical pathway.
        Front Immunol. 2016; 7: 55
        • Lindqvist A.K.
        • Alarcon-Riquelme M.E.
        The genetics of systemic lupus erythematosus.
        Scand J Immunol. 1999; 50: 562-571
        • Munroe M.E.
        • James J.A.
        Genetics of lupus nephritis: clinical implications.
        Semin Nephrol. 2015; 35: 396-409
        • Iwamoto T.
        • Niewold T.B.
        Genetics of human lupus nephritis.
        Clin Immunol. 2017; 185: 32-39
        • Bengtsson A.A.
        • Ronnblom L.
        Role of interferons in SLE. Best practice & research.
        Clin Rheumatol. 2017; 31: 415-428
        • Lorenz G.
        • Anders H.J.
        Neutrophils, dendritic cells, toll-like receptors, and interferon-alpha in lupus nephritis.
        Semin Nephrol. 2015; 35: 410-426
        • Lorenz G.
        • Desai J.
        • Anders H.J.
        Lupus nephritis: update on mechanisms of systemic autoimmunity and kidney immunopathology.
        Curr Opin Nephrol Hypertens. 2014; 23: 211-217
        • Felten R.
        • Scher F.
        • Sagez F.
        • Chasset F.
        • Arnaud L.
        Spotlight on anifrolumab and its potential for the treatment of moderate-to-severe systemic lupus erythematosus: evidence to date.
        Drug Des Dev Ther. 2019; 13: 1535-1543
        • Kennedy W.P.
        • Maciuca R.
        • Wolslegel K.
        • et al.
        Association of the interferon signature metric with serological disease manifestations but not global activity scores in multiple cohorts of patients with SLE.
        Lupus Sci Med. 2015; 2: e000080
        • Baechler E.C.
        • Batliwalla F.M.
        • Karypis G.
        • et al.
        Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus.
        Proc Natl Acad Sci U S A. 2003; 100: 2610-2615
        • Petri M.
        • Singh S.
        • Tesfasyone H.
        • et al.
        Longitudinal expression of type I interferon responsive genes in systemic lupus erythematosus.
        Lupus. 2009; 18: 980-989
        • Yao Y.
        • Higgs B.W.
        • Richman L.
        • White B.
        • Jallal B.
        Use of type I interferon-inducible mRNAs as pharmacodynamic markers and potential diagnostic markers in trials with sifalimumab, an anti-IFNα antibody, in systemic lupus erythematosus.
        Arthritis Res Ther. 2010; 12: S6
        • Furie R.
        • Khamashta M.
        • Merrill J.T.
        • et al.
        Anifrolumab, an anti-interferon-alpha receptor monoclonal antibody, in moderate-to-severe systemic lupus erythematosus.
        Arthritis Rheumatol. 2017; 69: 376-386
        • Khamashta M.
        • Merrill J.T.
        • Werth V.P.
        • et al.
        Sifalimumab, an anti-interferon-alpha monoclonal antibody, in moderate to severe systemic lupus erythematosus: a randomised, double-blind, placebo-controlled study.
        Ann Rheum Dis. 2016; 75: 1909-1916
        • Kalunian K.C.
        • Merrill J.T.
        • Maciuca R.
        • et al.
        A Phase II study of the efficacy and safety of rontalizumab (rhuMAb interferon-alpha) in patients with systemic lupus erythematosus (ROSE).
        Ann Rheum Dis. 2016; 75: 196-202
        • Austin 3rd, H.A.
        • Muenz L.R.
        • Joyce K.M.
        • Antonovych T.T.
        • Balow J.E.
        Diffuse proliferative lupus nephritis: identification of specific pathologic features affecting renal outcome.
        Kidney Int. 1984; 25: 689-695
        • Bajema I.M.
        • Wilhelmus S.
        • Alpers C.E.
        • et al.
        Revision of the International Society of Nephrology/Renal Pathology Society classification for lupus nephritis: clarification of definitions, and modified National Institutes of Health activity and chronicity indices.
        Kidney Int. 2018; 93: 789-796
        • Nishi H.
        • Mayadas T.N.
        Neutrophils in lupus nephritis.
        Curr Opin Rheumatol. 2019; 31: 193-200
        • Papayannopoulos V.
        • Zychlinsky A.
        NETs: a new strategy for using old weapons.
        Trends Immunology. 2009; 30: 513-521
        • Craft J.E.
        Dissecting the immune cell mayhem that drives lupus pathogenesis.
        Sci Transl Med. 2011; 3: 73ps79
        • Garcia-Romo G.S.
        • Caielli S.
        • Vega B.
        • et al.
        Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus.
        Sci Transl Med. 2011; 3: 73ra20
        • Lande R.
        • Ganguly D.
        • Facchinetti V.
        • et al.
        Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA-peptide complexes in systemic lupus erythematosus.
        Sci Transl Med. 2011; 3: 73ra19
        • Villanueva E.
        • Yalavarthi S.
        • Berthier C.C.
        • et al.
        Netting neutrophils induce endothelial damage, infiltrate tissues, and expose immunostimulatory molecules in systemic lupus erythematosus.
        J Immunol. 2011; 187: 538-552
        • Tillack K.
        • Breiden P.
        • Martin R.
        • Sospedra M.
        T lymphocyte priming by neutrophil extracellular traps links innate and adaptive immune responses.
        J Immunol. 2012; 188: 3150-3159
        • Hakkim A.
        • Furnrohr B.G.
        • Amann K.
        • et al.
        Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis.
        Proc Natl Acad Sci U S A. 2010; 107: 9813-9818
        • Carmona-Rivera C.
        • Kaplan M.J.
        Low-density granulocytes: a distinct class of neutrophils in systemic autoimmunity.
        Semin Immunopathol. 2013; 35: 455-463
        • Rahman S.
        • Sagar D.
        • Hanna R.N.
        • et al.
        Low-density granulocytes activate T cells and demonstrate a non-suppressive role in systemic lupus erythematosus.
        Ann Rheum Dis. 2019; 78: 957-966
        • Jourde-Chiche N.
        • Whalen E.
        • Gondouin B.
        • et al.
        Modular transcriptional repertoire analyses identify a blood neutrophil signature as a candidate biomarker for lupus nephritis.
        Rheumatology (Oxford). 2017; 56: 477-487
        • Wither J.E.
        • Prokopec S.D.
        • Noamani B.
        • et al.
        Identification of a neutrophil-related gene expression signature that is enriched in adult systemic lupus erythematosus patients with active nephritis: clinical/pathologic associations and etiologic mechanisms.
        PLoS One. 2018; 13: e0196117
        • Banchereau R.
        • Hong S.
        • Cantarel B.
        • et al.
        Personalized immunomonitoring uncovers molecular networks that stratify lupus patients.
        Cell. 2016; 165: 551-565
        • Birmingham D.J.
        • Merchant M.
        • Waikar S.S.
        • Nagaraja H.
        • Klein J.B.
        • Rovin B.H.
        Biomarkers of lupus nephritis histology and flare: deciphering the relevant amidst the noise.
        Nephrol Dial Transplant. 2017; 32: i71-i79
        • Brunner H.I.
        • Mueller M.
        • Rutherford C.
        • et al.
        Urinary neutrophil gelatinase-associated lipocalin as a biomarker of nephritis in childhood-onset systemic lupus erythematosus.
        Arthritis Rheum. 2006; 54: 2577-2584
        • Rubinstein T.
        • Pitashny M.
        • Putterman C.
        The novel role of neutrophil gelatinase-B associated lipocalin (NGAL)/Lipocalin-2 as a biomarker for lupus nephritis.
        Autoimmun Rev. 2008; 7: 229-234
        • Ding Y.
        • Nie L.M.
        • Pang Y.
        • et al.
        Composite urinary biomarkers to predict pathological tubulointerstitial lesions in lupus nephritis.
        Lupus. 2018; 27: 1778-1789