Targeting the Pathobiology of Diabetic Kidney Disease

  • Merlin C. Thomas
    Address correspondence to Merlin C. Thomas, MB ChB, PhD, FRACP, FAAHMS, Department of Diabetes, Central Clinical School, Monash University, 99 Commercial Rd, St Kilda Rd Central VIC 3004, Melbourne, Australia.
    Department of Diabetes, Monash University, Melbourne, Australia
    Search for articles by this author
      The pathobiology of diabetic kidney disease (DKD) involves an interplay between all the many different cell types that exist within the kidney and their shared and cumulative dysfunction in response to chronic hyperglycemia. DKD is characteriszed by morphological changes including tubular hypertrophy, podocyte dysfunction, mesangial expansion and mesangiolysis, endothelitis and capillary rarefaction, arteriolar hyalinosis, basement membrane thickening, and ultimately nephron dropout and tubulointerstitial fibrosis. These adaptive but ultimately maladaptive changes accelerate the progression of lesions in the diabetic kidney by increasing mechanical and oxidative stress, hypoxia, fibrogenesis, inflammation, senescence, and apoptosis. In particular, atrophy at the critical junction between Bowman's capsule and the proximal tubule likely represent the leading cause of nephron dropout and kidney function decline in DKD. Preventing, slowing, or reversing these changes should be the target of future “smart” therapies for patients with DKD, many of which are now under development.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Advances in Chronic Kidney Disease
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Thomas M.C.
        • Cherney D.Z.I.
        The actions of SGLT2 inhibitors on metabolism, renal function and blood pressure.
        Diabetologia. 2018; 61: 2098-2107
        • Katavetin P.
        • Katavetin P.
        Renal and retinal effects of enalapril and losartan in type 1 diabetes.
        N Engl J Med. 2009; 361 (author reply 1411): 1410-1411
        • Vallon V.
        • Thomson S.C.
        Targeting renal glucose reabsorption to treat hyperglycaemia: the pleiotropic effects of SGLT2 inhibition.
        Diabetologia. 2017; 60: 215-225
        • Thomas M.C.
        • Brownlee M.
        • Susztak K.
        • et al.
        Diabetic kidney disease.
        Nat Rev Dis Primers. 2015; 1: 15018
        • Thomson S.C.
        • Deng A.
        • Bao D.
        • Satriano J.
        • Blantz R.C.
        • Vallon V.
        Ornithine decarboxylase, kidney size, and the tubular hypothesis of glomerular hyperfiltration in experimental diabetes.
        J Clin Invest. 2001; 107: 217-224
        • Vallon V.
        • Thomson S.C.
        The tubular hypothesis of nephron filtration and diabetic kidney disease.
        Nat Rev Nephrol. 2020; 16: 317-336
        • Gilbert R.E.
        Proximal Tubulopathy: Prime Mover and key therapeutic target in diabetic kidney disease.
        Diabetes. 2017; 66: 791-800
        • Moresco R.N.
        • Bochi G.V.
        • Stein C.S.
        • De Carvalho J.A.M.
        • Cembranel B.M.
        • Bollick Y.S.
        Urinary kidney injury molecule-1 in renal disease.
        Clin Chim Acta. 2018; 487: 15-21
        • Habib S.L.
        Kidney atrophy vs hypertrophy in diabetes: which cells are involved?.
        Cell Cycle. 2018; 17: 1683-1687
        • Najafian B.
        • Kim Y.
        • Crosson J.T.
        • Mauer M.
        Atubular glomeruli and glomerulotubular junction abnormalities in diabetic nephropathy.
        J Am Soc Nephrol. 2003; 14: 908-917
        • Dalla Vestra M.
        • Saller A.
        • Bortoloso E.
        • Mauer M.
        • Fioretto P.
        Structural involvement in type 1 and type 2 diabetic nephropathy.
        Diabetes Metab. 2000; 26: 8-14
        • Marshall C.B.
        Rethinking glomerular basement membrane thickening in diabetic nephropathy: adaptive or pathogenic?.
        Am J Physiol Ren Physiol. 2016; 311: F831-F843
        • Lewko B.
        • Stepinski J.
        Hyperglycemia and mechanical stress: targeting the renal podocyte.
        J Cell Physiol. 2009; 221: 288-295
        • Ziyadeh F.N.
        • Wolf G.
        Pathogenesis of the podocytopathy and proteinuria in diabetic glomerulopathy.
        Curr Diabetes Rev. 2008; 4: 39-45
        • Wolf G.
        • Chen S.
        • Ziyadeh F.N.
        From the periphery of the glomerular capillary wall toward the center of disease: podocyte injury comes of age in diabetic nephropathy.
        Diabetes. 2005; 54: 1626-1634
        • Li J.J.
        • Kwak S.J.
        • Jung D.S.
        • et al.
        Podocyte biology in diabetic nephropathy.
        Kidney Int Suppl. 2007; : S36-S42
        • Herman-Edelstein M.
        • Thomas M.C.
        • Thallas-Bonke V.
        • Saleem M.
        • Cooper M.E.
        • Kantharidis P.
        Dedifferentiation of immortalized human podocytes in response to transforming growth factor-beta: a model for diabetic podocytopathy.
        Diabetes. 2011; 60: 1779-1788
        • Coward R.
        • Fornoni A.
        Insulin signaling: implications for podocyte biology in diabetic kidney disease.
        Curr Opin Nephrol Hypertens. 2015; 24: 104-110
        • Ponchiardi C.
        • Mauer M.
        • Najafian B.
        Temporal profile of diabetic nephropathy pathologic changes.
        Curr Diab Rep. 2013; 13: 592-599
        • Lemley K.V.
        • Abdullah I.
        • Myers B.D.
        • et al.
        Evolution of incipient nephropathy in type 2 diabetes mellitus.
        Kidney Int. 2000; 58: 1228-1237
        • Wada T.
        • Shimizu M.
        • Yokoyama H.
        • et al.
        Nodular lesions and mesangiolysis in diabetic nephropathy.
        Clin Exp Nephrol. 2013; 17: 3-9
        • Moreno J.A.
        • Gomez-Guerrero C.
        • Mas S.
        • et al.
        Targeting inflammation in diabetic nephropathy: a tale of hope.
        Expert Opin Investig Drugs. 2018; 27: 917-930
        • Misra P.S.
        • Szeto S.G.
        • Krizova A.
        • Gilbert R.E.
        • Yuen D.A.
        Renal histology in diabetic nephropathy predicts progression to end-stage kidney disease but not the rate of renal function decline.
        BMC Nephrol. 2020; 21: 285
        • Weigert C.
        • Brodbeck K.
        • Brosius 3rd, F.C.
        • et al.
        Evidence for a novel TGF-beta1-independent mechanism of fibronectin production in mesangial cells overexpressing glucose transporters.
        Diabetes. 2003; 52: 527-535
        • Kaiser N.
        • Sasson S.
        • Feener E.P.
        • et al.
        Differential regulation of glucose transport and transporters by glucose in vascular endothelial and smooth muscle cells.
        Diabetes. 1993; 42: 80-89
        • Thomas M.C.
        • Iyngkaran P.
        Forensic interrogation of diabetic endothelitis in cardiovascular diseases and clinical translation in heart failure.
        World J Cardiol. 2020; 12: 409-418
        • Bohle A.
        • Mackensen-Haen S.
        • Wehrmann M.
        Significance of postglomerular capillaries in the pathogenesis of chronic renal failure.
        Kidney Blood Press Res. 1996; 19: 191-195
        • Erusalimsky J.D.
        Vascular endothelial senescence: from mechanisms to pathophysiology.
        J Appl Physiol (1985). 2009; 106: 326-332
        • Tuttle K.R.
        • Cherney D.Z.I.
        Therapeutic transformation for diabetic kidney disease.
        Kidney Int. 2021; 99: 301-303
        • Eadon M.T.
        • Schwantes-An T.H.
        • Phillips C.L.
        • et al.
        Kidney Histopathology and prediction of kidney failure: a Retrospective Cohort study.
        Am J kidney Dis : official J Natl Kidney Found. 2020; 76: 350-360
        • Hu M.C.
        • Shi M.
        • Gillings N.
        • et al.
        Recombinant alpha-Klotho may be prophylactic and therapeutic for acute to chronic kidney disease progression and uremic cardiomyopathy.
        Kidney Int. 2017; 91: 1104-1114
        • Tanabe K.
        • Wada J.
        • Sato Y.
        Targeting angiogenesis and lymphangiogenesis in kidney disease.
        Nat Rev Nephrol. 2020; 16: 289-303
        • Kanamori H.
        • Matsubara T.
        • Mima A.
        • et al.
        Inhibition of MCP-1/CCR2 pathway ameliorates the development of diabetic nephropathy.
        Biochem Biophys Res Commun. 2007; 360: 772-777
        • Chow F.
        • Ozols E.
        • Nikolic-Paterson D.J.
        • Atkins R.C.
        • Tesch G.H.
        Macrophages in mouse type 2 diabetic nephropathy: correlation with diabetic state and progressive renal injury.
        Kidney Int. 2004; 65: 116-128
        • Bohle A.
        • Mackensen-Haen S.
        • von Gise H.
        • et al.
        The consequences of tubulo-interstitial changes for renal function in glomerulopathies. A morphometric and cytological analysis.
        Pathol Res Pract. 1990; 186: 135-144
        • Ruiz-Ortega M.
        • Rayego-Mateos S.
        • Lamas S.
        • Ortiz A.
        • Rodrigues-Diez R.R.
        Targeting the progression of chronic kidney disease.
        Nat Rev Nephrol. 2020; 16: 269-288
        • Gonzalez-Martin G.
        • Cano J.
        • Carriazo S.
        • et al.
        The dirty little secret of urate-lowering therapy: useless to stop chronic kidney disease progression and may increase mortality.
        Clin Kidney J. 2020; 13: 936-947
        • Thomas M.C.
        Advanced glycation end products.
        Contrib Nephrol. 2011; 170: 66-74
        • Dimitropoulos A.
        • Rosado C.J.
        • Thomas M.C.
        Dicarbonyl-mediated AGEing and diabetic kidney disease.
        J Nephrol. 2020; 33: 909-915
        • Godel M.
        • Hartleben B.
        • Herbach N.
        • et al.
        Role of mTOR in podocyte function and diabetic nephropathy in humans and mice.
        The J Clin Invest. 2011; 121: 2197-2209
        • Kogot-Levin A.
        • Hinden L.
        • Riahi Y.
        • et al.
        Proximal tubule mTORC1 is a central player in the pathophysiology of diabetic nephropathy and its Correction by SGLT2 inhibitors.
        Cell Rep. 2020; 32: 107954
        • Kume S.
        • Thomas M.C.
        • Koya D.
        Nutrient sensing, autophagy, and diabetic nephropathy.
        Diabetes. 2012; 61: 23-29