Advertisement

Transplant Onconephrology in Patients With Kidney Transplants

      Cancer is a leading cause of death in patients with kidney transplantation. Patients with kidney transplants are 10- to 200-times more likely to develop cancers after transplant than the general population, depending on the cancer type. Recent advances in cancer therapies have dramatically improved survival outcomes; however, patients with kidney transplants face unique challenges of immunosuppression management, cancer screening, and recurrence of cancer after transplant. Patients with a history of cancer tend to be excluded from transplant candidacy or are required to have long cancer-free wait time before wait-listing. The strategy of pretransplant wait time management may need to be revisited as cancer therapies improve, which is most applicable to patients with a history of multiple myeloma. In this review, we discuss several important topics in transplant onconephrology: the current recommendations for pretransplant wait times for transplant candidates with cancer histories, cancer screening post-transplant, post-transplant lymphoproliferative disorder, strategies for transplant patients with a history of multiple myeloma, and novel therapies for patients with post-transplant malignancies. With emerging novel cancer treatments, it is critical to have multidisciplinary discussions involving patients, caregivers, transplant nephrologists, and oncologists to achieve patient-oriented goals.

      Graphical abstract

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Advances in Chronic Kidney Disease
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Blosser C.D.
        • Haber G.
        • Engels E.A.
        Changes in cancer incidence and outcomes among kidney transplant recipients in the United States over a thirty-year period.
        Kidney Int. 2021; 99: 1430-1438
        • Al-Adra D.P.
        • Hammel L.
        • Roberts J.
        • et al.
        Pretransplant solid organ malignancy and organ transplant candidacy: a consensus expert opinion statement.
        Am J Transpl. 2021; 21: 460-474
        • Al-Adra D.P.
        • Hammel L.
        • Roberts J.
        • et al.
        Preexisting melanoma and hematological malignancies, prognosis, and timing to solid organ transplantation: a consensus expert opinion statement.
        Am J Transpl. 2021; 21: 475-483
        • Engels E.A.
        • Pfeiffer R.M.
        • Fraumeni J.F.
        • et al.
        Spectrum of cancer risk among US solid organ transplant recipients.
        JAMA. 2011; 306: 1891-1901
        • Acuna S.A.
        • Huang J.W.
        • Scott A.L.
        • et al.
        Cancer screening recommendations for solid organ transplant recipients: a systematic review of clinical practice guidelines.
        Am J Transpl. 2017; 17: 103-114
        • Kasiske B.L.
        • Vazquez M.A.
        • Harmon W.E.
        • et al.
        Recommendations for the outpatient surveillance of renal transplant recipients. American Society of Transplantation.
        J Am Soc Nephrol. 2000; 11: S1-S86
        • Doublet J.D.
        • Peraldi M.N.
        • Gattegno B.
        • Thibault P.
        • Sraer J.D.
        Renal cell carcinoma of native kidneys: prospective study of 129 renal transplant patients.
        J Urol. 1997; 158: 42-44
        • Schwarz A.
        • Vatandaslar S.
        • Merkel S.
        • Haller H.
        Renal cell carcinoma in transplant recipients with acquired cystic kidney disease.
        Clin J Am Soc Nephrol. 2007; 2: 750-756
        • Kidney Disease: Improving Global Outcomes (KDIGO) Transplant Work Group
        KDIGO clinical practice guideline for the care of kidney transplant recipients.
        Am J Transpl. 2009; 9: S1-S155
        • Mihalov M.L.
        • Gattuso P.
        • Abraham K.
        • Holmes E.W.
        • Reddy V.
        Incidence of post-transplant malignancy among 674 solid-organ-transplant recipients at a single center.
        Clin Transpl. 1996; 10: 248-255
        • Opelz G.
        • Henderson R.
        Incidence of non-Hodgkin lymphoma in kidney and heart transplant recipients.
        Lancet. 1993; 342: 1514-1516
        • Cherikh W.S.
        • Kauffman H.M.
        • McBride M.A.
        • Maghirang J.
        • Swinnen L.J.
        • Hanto D.W.
        Association of the type of induction immunosuppression with posttransplant lymphoproliferative disorder, graft survival, and patient survival after primary kidney transplantation.
        Transplantation. 2003; 76: 1289-1293
        • Bustami R.T.
        • Ojo A.O.
        • Wolfe R.A.
        • et al.
        Immunosuppression and the risk of post-transplant malignancy among cadaveric first kidney transplant recipients.
        Am J Transpl. 2004; 4: 87-93
        • Marks W.H.
        • Ilsley J.N.
        • Dharnidharka V.R.
        Posttransplantation lymphoproliferative disorder in kidney and heart transplant recipients receiving thymoglobulin: a systematic review.
        Transpl Proc. 2011; 43: 1395-1404
        • Herman M.
        • Weinstein T.
        • Korzets A.
        • et al.
        Effect of cyclosporin A on DNA repair and cancer incidence in kidney transplant recipients.
        J Lab Clin Med. 2001; 137: 14-20
        • Dantal J.
        • Hourmant M.
        • Cantarovich D.
        • et al.
        Effect of long-term immunosuppression in kidney-graft recipients on cancer incidence: randomised comparison of two cyclosporin regimens.
        Lancet. 1998; 351: 623-628
        • Dharnidharka V.R.
        • Ho P.-L.
        • Stablein D.M.
        • Harmon W.E.
        • Tejani A.H.
        Mycophenolate, tacrolimus and post-transplant lymphoproliferative disorder: a report of the North American pediatric renal transplant Cooperative study.
        Pediatr Transpl. 2002; 6: 396-399
        • Swann P.F.
        • Waters T.R.
        • Moulton D.C.
        • et al.
        Role of postreplicative DNA mismatch repair in the cytotoxic action of thioguanine.
        Science. 1996; 273: 1109-1111
        • Offman J.
        • Opelz G.
        • Doehler B.
        • et al.
        Defective DNA mismatch repair in acute myeloid leukemia/myelodysplastic syndrome after organ transplantation.
        Blood. 2004; 104: 822-828
        • Robson R.
        • Cecka J.M.
        • Opelz G.
        • Budde M.
        • Sacks S.
        Prospective registry-based observational cohort study of the long-term risk of malignancies in renal transplant patients treated with mycophenolate mofetil.
        Am J Transpl. 2005; 5: 2954-2960
        • Campistol J.M.
        • Eris J.
        • Oberbauer R.
        • et al.
        Sirolimus therapy after early cyclosporine withdrawal reduces the risk for cancer in adult renal transplantation.
        J Am Soc Nephrol. 2006; 17: 581-589
        • Luan F.L.
        • Hojo M.
        • Maluccio M.
        • Yamaji K.
        • Suthanthiran M.
        Rapamycin blocks tumor progression: unlinking immunosuppression from antitumor efficacy.
        Transplantation. 2002; 73: 1565-1572
        • Stallone G.
        • Schena A.
        • Infante B.
        • et al.
        Sirolimus for Kaposi’s sarcoma in renal-transplant recipients.
        N Engl J Med. 2005; 352: 1317-1323
        • Euvrard S.
        • Morelon E.
        • Rostaing L.
        • et al.
        Sirolimus and secondary skin-cancer prevention in kidney transplantation.
        N Engl J Med. 2012; 367: 329-339
        • Santos A.H.
        • Chen C.
        • Leghrouz M.A.
        • Bueno E.P.
        • Lee J.J.
        • Wen X.
        Association of HLA mismatch and MTOR inhibitor regimens with malignancy and mortality after kidney transplantation.
        Transpl Immunol. 2021; 66: 101391
        • Muthukkumar S.
        • Ramesh T.M.
        • Bondada S.
        Rapamycin, a potent immunosuppressive drug, causes programmed cell death in B lymphoma cells.
        Transplantation. 1995; 60: 264-270
        • Luan F.L.
        • Ding R.
        • Sharma V.K.
        • Chon W.J.
        • Lagman M.
        • Suthanthiran M.
        Rapamycin is an effective inhibitor of human renal cancer metastasis.
        Kidney Int. 2003; 63: 917-926
        • Nepomuceno R.R.
        • Balatoni C.E.
        • Natkunam Y.
        • Snow A.L.
        • Krams S.M.
        • Martinez O.M.
        Rapamycin inhibits the interleukin 10 signal transduction pathway and the growth of Epstein Barr virus B-cell lymphomas.
        Cancer Res. 2003; 63: 4472-4480
        • García-Morales P.
        • Hernando E.
        • Carrasco-García E.
        • Menéndez-Gutierrez M.P.
        • Saceda M.
        • Martínez-Lacaci I.
        Cyclin D3 is down-regulated by rapamycin in HER-2-overexpressing breast cancer cells.
        Mol Cancer Ther. 2006; 5: 2172-2181
        • Guba M.
        • von Breitenbuch P.
        • Steinbauer M.
        • et al.
        Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: involvement of vascular endothelial growth factor.
        Nat Med. 2002; 8: 128-135
        • Huber S.
        • Bruns C.J.
        • Schmid G.
        • et al.
        Inhibition of the mammalian target of rapamycin impedes lymphangiogenesis.
        Kidney Int. 2007; 71: 771-777
        • Vincenti F.
        • Charpentier B.
        • Vanrenterghem Y.
        • et al.
        A phase III study of belatacept-based immunosuppression regimens versus cyclosporine in renal transplant recipients (BENEFIT study).
        Am J Transpl. 2010; 10: 535-546
        • Vincenti F.
        • Rostaing L.
        • Grinyo J.
        • et al.
        Belatacept and long-term outcomes in kidney transplantation.
        N Engl J Med. 2016; 374: 333-343
        • Dharnidharka V.R.
        • Webster A.C.
        • Martinez O.M.
        • Preiksaitis J.K.
        • Leblond V.
        • Choquet S.
        Post-transplant lymphoproliferative disorders.
        Nat Rev Dis Primers. 2016; 2: 15088
        • Allen U.D.
        • Preiksaitis J.K.
        • AST Infectious Diseases Community of Practice
        Post-transplant lymphoproliferative disorders, Epstein-barr virus infection, and disease in solid organ transplantation: guidelines from the American Society of transplantation infectious diseases Community of practice.
        Clin Transpl. 2019; 33: e13652
        • Reshef R.
        • Vardhanabhuti S.
        • Luskin M.R.
        • et al.
        Reduction of immunosuppression as initial therapy for posttransplantation lymphoproliferative disorder(★).
        Am J Transpl. 2011; 11: 336-347
        • Trappe R.U.
        • Dierickx D.
        • Zimmermann H.
        • et al.
        Response to rituximab induction is a Predictive marker in B-cell post-transplant lymphoproliferative disorder and Allows successful stratification into rituximab or R-CHOP Consolidation in an International, prospective, multicenter phase II trial.
        J Clin Oncol. 2017; 35: 536-543
        • Zimmermann H.
        • Trappe R.U.
        EBV and posttransplantation lymphoproliferative disease: what to do?.
        Hematol Am Soc Hematol Educ Program. 2013; 2013: 95-102
        • Haque T.
        • Wilkie G.M.
        • Jones M.M.
        • et al.
        Allogeneic cytotoxic T-cell therapy for EBV-positive posttransplantation lymphoproliferative disease: results of a phase 2 multicenter clinical trial.
        Blood. 2007; 110: 1123-1131
        • Chiou F.K.
        • Beath S.V.
        • Wilkie G.M.
        • Vickers M.A.
        • Morland B.
        • Gupte G.L.
        Cytotoxic T-lymphocyte therapy for post-transplant lymphoproliferative disorder after solid organ transplantation in children.
        Pediatr Transpl. 2018; 22https://doi.org/10.1111/petr.13133
        • Neelapu S.S.
        • Locke F.L.
        • Bartlett N.L.
        • et al.
        Axicabtagene Ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma.
        New Engl J Med. 2017; 377: 2531-2544
        • Raje N.
        • Berdeja J.
        • Lin Y.
        • et al.
        Anti-BCMA CAR T-cell therapy bb2121 in relapsed or refractory multiple myeloma.
        N Engl J Med. 2019; 380: 1726-1737
        • Kanduri S.R.
        • Cheungpasitporn W.
        • Thongprayoon C.
        • et al.
        Systematic review of risk factors and incidence of acute kidney injury among patients treated with CAR-T cell therapies.
        Kidney Int Rep. 2021; 6: 1416-1422
        • Gupta S.
        • Seethapathy H.
        • Strohbehn I.A.
        • et al.
        Acute kidney injury and electrolyte abnormalities after chimeric antigen receptor T-cell (CAR-T) therapy for diffuse large B-cell lymphoma.
        Am J Kidney Dis. 2020; 76: 63-71
        • Le R.Q.
        • Li L.
        • Yuan W.
        • et al.
        FDA approval summary: tocilizumab for treatment of chimeric antigen receptor T cell-induced severe or life-threatening cytokine release syndrome.
        Oncologist. 2018; 23: 943-947
        • Krishnamoorthy S.
        • Ghobadi A.
        • Santos R.D.
        • et al.
        CAR-T therapy in solid organ transplant recipients with treatment refractory posttransplant lymphoproliferative disorder.
        Am J Transpl. 2021; 21: 809-814
        • Mamlouk O.
        • Nair R.
        • Iyer S.P.
        • et al.
        Safety and efficacy of CAR T-cell therapy in kidney transplant recipients.
        Blood. 2020;
        • Luttwak E.
        • Hagin D.
        • Perry C.
        • et al.
        Anti-CD19 CAR-T therapy for EBV-negative posttransplantation lymphoproliferative disease-a single center case series.
        Bone Marrow Transpl. 2020; 56: 1031-1037
        • Decourt A.
        • Gondouin B.
        • Delaroziere J.C.
        • et al.
        Trends in survival and renal Recovery in patients with multiple myeloma or light-chain amyloidosis on Chronic dialysis.
        Clin J Am Soc Nephrol. 2016; 11: 431-441
        • Leung N.
        • Lager D.J.
        • Gertz M.A.
        • Wilson K.
        • Kanakiriya S.
        • Fervenza F.C.
        Long-term outcome of renal transplantation in light-chain deposition disease.
        Am J Kidney Dis. 2004; 43: 147-153
        • Kumar S.K.
        • Dispenzieri A.
        • Lacy M.Q.
        • et al.
        Continued improvement in survival in multiple myeloma: changes in early mortality and outcomes in older patients.
        Leukemia. 2014; 28: 1122-1128
        • Fonseca R.
        • Abouzaid S.
        • Bonafede M.
        • et al.
        Trends in overall survival and costs of multiple myeloma, 2000-2014.
        Leukemia. 2017; 31: 1915-1921
        • Rajkumar S.V.
        • Kumar S.
        Multiple myeloma current treatment algorithms.
        Blood Cancer J. 2020; 10: 94
        • Voorhees P.M.
        • Kaufman J.L.
        • Laubach J.
        • et al.
        Daratumumab, lenalidomide, bortezomib, and dexamethasone for transplant-eligible newly diagnosed multiple myeloma: the GRIFFIN trial.
        Blood. 2020; 136: 936-945
        • Palumbo A.
        • Avet-Loiseau H.
        • Oliva S.
        • et al.
        Revised International staging system for multiple myeloma: a report from International myeloma working group.
        J Clin Oncol. 2015; 33: 2863-2869
        • Munshi N.C.
        • Avet-Loiseau H.
        • Rawstron A.C.
        • et al.
        Association of minimal residual disease with Superior survival outcomes in patients with multiple myeloma: a meta-analysis.
        JAMA Oncol. 2017; 3: 28-35
        • Chitty D.W.
        • Hartley-Brown M.A.
        • Abate M.
        • et al.
        Kidney transplantation in patients with multiple myeloma: narrative analysis and review of the last 2 decades.
        Nephrol Dial Transpl. 2020; gfaa361https://doi.org/10.1093/ndt/gfaa361
        • Pasternack A.
        • Ahonen J.
        • Kuhlbäck B.
        Renal transplantation in 45 patients with amyloidosis.
        Transplantation. 1986; 42: 598-601
        • Angel-Korman A.
        • Stern L.
        • Sarosiek S.
        • et al.
        Long-term outcome of kidney transplantation in AL amyloidosis.
        Kidney Int. 2019; 95: 405-411
        • Law S.
        • Cohen O.
        • Lachmann H.J.
        • et al.
        Renal transplant outcomes in amyloidosis.
        Nephrol Dial Transpl. 2021; 36: 355-365
        • Kumar S.K.
        • Therneau T.M.
        • Gertz M.A.
        • et al.
        Clinical course of patients with relapsed multiple myeloma.
        Mayo Clin Proc. 2004; 79: 867-874
        • Huskey J.L.
        • Heilman R.L.
        • Khamash H.
        • Fonseca R.
        Kidney transplant in the Era of modern therapy for multiple myeloma.
        Transplantation. 2018; 102: 1994-2001
        • Stewart A.K.
        • Rajkumar S.V.
        • Dimopoulos M.A.
        • et al.
        Carfilzomib, lenalidomide, and dexamethasone for relapsed multiple myeloma.
        N Engl J Med. 2015; 372: 142-152
        • Siegel D.S.
        • Dimopoulos M.A.
        • Ludwig H.
        • et al.
        Improvement in overall survival with carfilzomib, lenalidomide, and dexamethasone in patients with relapsed or refractory multiple myeloma.
        J Clin Oncol. 2018; 36: 728-734
        • Moreau P.
        • Masszi T.
        • Grzasko N.
        • et al.
        Oral ixazomib, lenalidomide, and dexamethasone for multiple myeloma.
        N Engl J Med. 2016; 374: 1621-1634
        • Carrier M.
        • Le Gal G.
        • Tay J.
        • Wu C.
        • Lee A.Y.
        Rates of venous thromboembolism in multiple myeloma patients undergoing immunomodulatory therapy with thalidomide or lenalidomide: a systematic review and meta-analysis.
        J Thromb Haemost. 2011; 9: 653-663
        • Dimopoulos M.A.
        • Jakubowiak A.J.
        • McCarthy P.L.
        • et al.
        Developments in continuous therapy and maintenance treatment approaches for patients with newly diagnosed multiple myeloma.
        Blood Cancer J. 2020; 10: 17
        • Dimopoulos M.A.
        • Gay F.
        • Schjesvold F.
        • et al.
        Oral ixazomib maintenance following autologous stem cell transplantation (TOURMALINE-MM3): a double-blind, randomised, placebo-controlled phase 3 trial.
        Lancet. 2019; 393: 253-264
        • Jagannath S.
        • Abonour R.
        • Durie B.G.M.
        • et al.
        Impact of post-ASCT maintenance therapy on outcomes in patients with newly diagnosed multiple myeloma in Connect MM.
        Blood Adv. 2018; 2: 1608-1615
        • Lum E.
        • Huang E.
        • Bunnapradist S.
        • Pham T.
        • Danovitch G.
        Acute kidney allograft rejection Precipitated by lenalidomide treatment for multiple myeloma.
        Am J Kidney Dis. 2017; 69: 701-704
        • Meyers D.E.
        • Adu-Gyamfi B.
        • Segura A.M.
        • et al.
        Fatal cardiac and renal allograft rejection with lenalidomide therapy for light-chain amyloidosis.
        Am J Transpl. 2013; 13: 2730-2733
        • Vaxman I.
        • Eaton J.
        • Lee H.E.
        • Gertz M.A.
        Acute liver rejection in a multiple myeloma patient treated with lenalidomide.
        Case Rep Transpl. 2020; 2020: 8894922
        • Walavalkar V.
        • Adey D.B.
        • Laszik Z.G.
        • Jen K.-Y.
        Severe renal allograft rejection resulting from lenalidomide therapy for multiple myeloma: case report.
        Transplant Proc. 2018; 50: 873-876
        • Everly M.J.
        • Everly J.J.
        • Susskind B.
        • et al.
        Bortezomib provides effective therapy for antibody- and cell-mediated acute rejection.
        Transplantation. 2008; 86: 1754-1761
        • Doberer K.
        • Kläger J.
        • Gualdoni G.A.
        • et al.
        CD38 antibody daratumumab for the treatment of Chronic active antibody-mediated kidney allograft rejection.
        Transplantation. 2021; 105: 451-457
        • Kwun J.
        • Matignon M.
        • Manook M.
        • et al.
        Daratumumab in Sensitized kidney transplantation: Potentials and Limitations of Experimental and clinical Use.
        J Am Soc Nephrol. 2019; 30: 1206-1219
        • D’Agostino M.
        • Raje N.
        Anti-BCMA CAR T-cell therapy in multiple myeloma: can we do better?.
        Leukemia. 2020; 34: 21-34
        • Musto P.
        • Anderson K.C.
        • Attal M.
        • et al.
        Second primary malignancies in multiple myeloma: an overview and IMWG consensus.
        Ann Oncol. 2017; 28: 228-245
        • Yamasaki S.
        • Yoshimoto G.
        • Kohno K.
        • et al.
        Risk of secondary primary malignancies in multiple myeloma patients with or without autologous stem cell transplantation.
        Int J Hematol. 2019; 109: 98-106
        • Hickman L.A.
        • Sawinski D.
        • Guzzo T.
        • Locke J.E.
        Urologic malignancies in kidney transplantation.
        Am J Transpl. 2018; 18: 13-22
        • Casal M.A.
        • Nolin T.D.
        • Beumer J.H.
        Estimation of kidney function in oncology: Implications for Anticancer drug selection and dosing.
        CJASN. 2019; 14: 587-595
        • Chancharoenthana W.
        • Wattanatorn S.
        • Vadcharavivad S.
        • Eiam-Ong S.
        • Leelahavanichkul A.
        Agreement and Precision Analyses of various estimated Glomerular Filtration rate Formulae in cancer patients.
        Sci Rep. 2019; 9: 19356
        • Kandula P.
        • Agarwal R.
        Proteinuria and hypertension with tyrosine kinase inhibitors.
        Kidney Int. 2011; 80: 1271-1277
        • Nadeau Nguyen M.
        • Nayernama A.
        • Jones S.C.
        • Kasamon Y.L.
        • Waldron P.E.
        Solid organ transplant rejection associated with the Use of the immunomodulatory drugs (IMIDs).
        Blood. 2019; 134: 2189
        • Qualls D.A.
        • Lewis G.D.
        • Sanchorawala V.
        • Staron A.
        Orthotopic heart transplant rejection in association with immunomodulatory therapy for AL amyloidosis: a case series and review of the literature.
        Am J Transpl. 2019; 19: 3185-3190
        • Magnone M.
        • Holley J.L.
        • Shapiro R.
        • et al.
        Interferon-α-induced acute renal allograft rejection.
        Transplantation. 1995; 59: 1068-1070
        • Saab S.
        • Kalmaz D.
        • Gajjar N.A.
        • et al.
        Outcomes of acute rejection after interferon therapy in liver transplant recipients.
        Liver Transplant. 2004; 10: 859-867
        • LeBlanc R.
        • Hideshima T.
        • Catley L.P.
        • et al.
        Immunomodulatory drug costimulates T cells via the B7-CD28 pathway.
        Blood. 2004; 103: 1787-1790
        • Dutcher J.P.
        • Schwartzentruber D.J.
        • Kaufman H.L.
        • et al.
        High dose interleukin-2 (Aldesleukin) - expert consensus on best management practices-2014.
        J ImmunoTherapy Cancer. 2014; 2: 26
        • Sharma P.
        • Allison J.P.
        The future of immune checkpoint therapy.
        Science. 2015; 348: 56-61
        • Lipson E.J.
        • Bodell M.A.
        • Kraus E.S.
        • Sharfman W.H.
        Successful administration of ipilimumab to two kidney transplantation patients with metastatic melanoma.
        J Clin Oncol. 2014; 32: e69-e71
        • Lipson E.J.
        • Bagnasco S.M.
        • Moore J.
        • et al.
        Tumor Regression and allograft rejection after administration of anti-PD-1.
        N Engl J Med. 2016; 374: 896-898
        • Ito T.
        • Ueno T.
        • Clarkson M.R.
        • et al.
        Analysis of the role of negative T cell Costimulatory pathways in CD4 and CD8 T cell-mediated Alloimmune responses in vivo.
        J Immunol. 2005; 174: 6648-6656
        • Yang J.
        • Popoola J.
        • Khandwala S.
        • et al.
        Critical role of donor tissue expression of programmed death ligand-1 in regulating cardiac allograft rejection and vasculopathy.
        Circulation. 2008; 117: 660-669
        • Riella L.V.
        • Watanabe T.
        • Sage P.T.
        • et al.
        Essential role of PDL1 expression on nonhematopoietic donor cells in acquired tolerance to vascularized cardiac allografts.
        Am J Transpl. 2011; 11: 832-840
        • Abdel-Wahab N.
        • Safa H.
        • Abudayyeh A.
        • et al.
        Checkpoint inhibitor therapy for cancer in solid organ transplantation recipients: an institutional experience and a systematic review of the literature.
        J Immunother Cancer. 2019; 7: 106
        • d’Izarny-Gargas T.
        • Durrbach A.
        • Zaidan M.
        Efficacy and tolerance of immune checkpoint inhibitors in transplant patients with cancer: a systematic review.
        Am J Transpl. 2020; 10: 2457-2465
        • Murakami N.
        • Mulvaney P.
        • Danesh M.
        • et al.
        A multi-center study on safety and efficacy of immune checkpoint inhibitors in cancer patients with kidney transplant.
        Kidney Int. 2020; 100: 196-205
      1. National Cancer Institute (NCI). Immune Checkpoint Blockade for Kidney Transplant Recipients With Selected Unresectable or Metastatic Cancers. clinicaltrials.gov; 2021. Accessed September 25, 2021. https://clinicaltrials.gov/ct2/show/NCT03816332

        • Hanna G.J.
        Safety and efficacy of cemiplimab (PD-1 Blockade) in Selected Organ Transplant Recipients With Advanced Cutaneous Squamous Cell Carcinoma (CONTRAC).
        clinicaltrials.gov, 2020 (Accessed September 25, 2021)
        • Barnett R.
        • Barta V.S.
        • Jhaveri K.D.
        Preserved renal-allograft function and the PD-1 pathway inhibitor nivolumab.
        N Engl J Med. 2017; 376: 191-192
      2. ANZCTR - Registration. Accessed September 25, 2021. https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=372928

        • Adam B.
        • Murakami N.
        • Reid G.
        • et al.
        Gene expression Profiling in kidney transplants with immune checkpoint inhibitor-associated adverse Events.
        Clin J Am Soc Nephrol. 2021; 16: 1376-1386
        • Hurkmans D.P.
        • Verhoeven J.G.H.P.
        • de Leur K.
        • et al.
        Donor-derived cell-free DNA detects kidney transplant rejection during nivolumab treatment.
        J Immunother Cancer. 2019; 7: 182
        • Lakhani L.
        • Alasfar S.
        • Bhalla A.
        • et al.
        Utility of serial donor-derived cell-free DNA measurements for detecting allograft rejection in a kidney transplant recipient after PD-1 checkpoint inhibitor administration.
        Transpl Direct. 2021; 7: e656
        • Duni A.
        • Kitsos A.
        • Liapis G.
        • Tatsis V.
        • Pappas C.
        • Dounousi E.
        Acute kidney transplant rejection after administration of nivolumab in a dialysis patient with a failed graft.
        Kidney Int Rep. 2021; 6: 1459-1463
        • Mejia C.D.
        • Frank A.M.
        • Singh P.
        • Yadav A.
        Immune checkpoint inhibitor therapy-associated graft intolerance syndrome in a failed kidney transplant recipient.
        Am J Transpl. 2021; 21: 1322-1325
        • Kitchlu A.
        • Jhaveri K.D.
        • Sprangers B.
        • Yanagita M.
        • Wanchoo R.
        Immune-checkpoint inhibitor use in patients with end-stage kidney disease: an analysis of reported cases and literature review.
        Clin Kidney J. 2021; 14 (sfab090): 2012-2022
        • Dinh A.R.
        • Wong S.W.
        • Martin T.G.
        • Wolf J.L.
        • Webber A.B.
        Outcomes of kidney transplant recipients with ESKD due to plasma cell dyscrasia: a case series.
        Clin Transplant. 2021; 36e14541
        • Schreiber B.
        • Abdelrahim M.
        • Abudayyeh A.
        • Murakami N.
        Emerging concepts in managing malignancy in kidney transplant patients..
        Semin Nephrol. 2022; 42: 63-75