Advertisement

Young Adults With Hereditary Tubular Diseases: Practical Aspects for Adult-Focused Colleagues

      Recent advances in the management of kidney tubular diseases have resulted in a significant cohort of adolescents and young adults transitioning from pediatric- to adult-focused care. Most of the patients under adult-focused care have glomerular diseases, whereas rarer tubular diseases form a considerable proportion of pediatric patients. The purpose of this review is to highlight the clinical signs and symptoms of tubular disorders, as well as their diagnostic workup, including laboratory findings and imaging, during young adulthood. We will then discuss more common disorders such as cystinosis, cystinuria, distal kidney tubular acidosis, congenital nephrogenic diabetes insipidus, Dent disease, rickets, hypercalciuria, and syndromes such as Bartter, Fanconi, Gitelman, Liddle, and Lowe. This review is a practical guide on the diagnostic and therapeutic approach of tubular conditions affecting young adults who are transitioning to adult-focused care.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Advances in Chronic Kidney Disease
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Ferris M.E.
        • Gipson D.S.
        • Kimmel P.L.
        • Eggers P.W.
        Trends in treatment and outcomes of survival of adolescents initiating end-stage renal disease care in the United States of America.
        Pediatr Nephrol. 2006; 21: 1020-1026
        • Diaz-Gonzalez de Ferris M.E.
        • Ferris M.T.
        • Filler G.
        Transition from paediatric to adult-focused care: unresolved issues.
        Nat Rev Nephrol. 2021; 17: 705-706https://doi.org/10.1038/s41581-021-00476-6
        • Kiran B.V.
        • Barman H.
        • Iyengar A.
        Clinical profile and outcome of renal tubular disorders in children: a single center experience.
        Indian J Nephrol. 2014; 24: 362-366
        • Shi X.
        • Shi Y.
        • Zhang L.
        • et al.
        Analysis of chronic kidney disease among national hospitalization data with 14 million children.
        BMC Nephrol. 2021; 22: 195
        • Filler G.
        • Payne R.P.
        • Orrbine E.
        • Clifford T.
        • Drukker A.
        • McLaine P.N.
        Changing trends in the referral patterns of pediatric nephrology patients.
        Pediatr Nephrol. 2005; 20: 603-608
        • Desloovere A.
        • Renken-Terhaerdt J.
        • Tuokkola J.
        • et al.
        The dietary management of potassium in children with CKD stages 2-5 and on dialysis-clinical practice recommendations from the Pediatric Renal Nutrition Taskforce.
        Pediatr Nephrol. 2021; 36: 1331-1346
        • Topaloglu R.
        • Baskin E.
        • Bahat E.
        • et al.
        Hereditary renal tubular disorders in Turkey: demographic, clinical, and laboratory features.
        Clin Exp Nephrol. 2011; 15: 108-113
        • Bhasin B.
        • Velez J.C.
        Evaluation of polyuria: the roles of solute loading and water diuresis.
        Am J Kidney Dis. 2016; 67: 507-511
        • Servais A.
        • Thomas K.
        • Dello Strologo L.
        • et al.
        Cystinuria: clinical practice recommendation.
        Kidney Int. 2021; 99: 48-58
        • Leung A.K.
        • Robson W.L.
        • Halperin M.L.
        Polyuria in childhood.
        Clin Pediatr. 1991; 30: 634-640
      1. Kotagiri R, Kutti Sridharan G. Primary Polydipsia. In: StatPearls [Internet]. Treasure Island, FL: StatPearls Publishing; April 30, 2022.

        • Lopez-Garcia S.C.
        • Downie M.L.
        • Kim J.S.
        • et al.
        Treatment and long-term outcome in primary nephrogenic diabetes insipidus.
        Nephrol Dial Transpl. 2020; (online ahead of print)
        • Walsh P.R.
        • Tse Y.
        • Ashton E.
        • et al.
        Clinical and diagnostic features of Bartter and Gitelman syndromes.
        Clin Kidney J. 2018; 11: 302-309
        • Filler G.
        • Geda R.
        • Salerno F.
        • Zhang Y.C.
        • de Ferris M.E.D.
        • McIntyre C.W.
        Management of severe polyuria in idiopathic Fanconi syndrome.
        Pediatr Nephrol. 2021; 36: 3621-3626https://doi.org/10.1007/s00467-021-05213-6
        • Betend B.
        • David L.
        • Vincent M.
        • Hermier M.
        • Francois R.
        Successful indomethacin treatment of two paediatric patients with severe tubulopathies. A boy with an unusual hypercalciuria and a girl with cystinosis.
        Helvetica Paediatr Acta. 1979; 34: 339-344
        • Parchoux B.
        • Guibaud P.
        • Louis J.J.
        • Benzoni D.
        • Larbre F.
        [Urinary prostaglandins and effect of indomethacin therapy in cystinosis].
        Pediatrie. 1982; 37: 19-30
        • Haycock G.B.
        • Al-Dahhan J.
        • Mak R.H.
        • Chantler C.
        Effect of indomethacin on clinical progress and renal function in cystinosis.
        Arch Dis Child. 1982; 57: 934-939
        • Kolwelter J.
        • Uder M.
        • Schmieder R.E.
        Tissue sodium content in hypertension and related organ damage.
        J Hypertens. 2020; 38: 2363-2368
        • Bamgbola O.F.
        • Ahmed Y.
        Differential diagnosis of perinatal Bartter, Bartter and Gitelman syndromes.
        Clin Kidney J. 2021; 14: 36-48
        • Qirjazi E.
        • Salerno F.R.
        • Akbari A.
        • et al.
        Tissue sodium concentrations in chronic kidney disease and dialysis patients by lower leg sodium-23 magnetic resonance imaging.
        Nephrol Dial Transpl. 2020; (Online ahead of print)
        • Acar S.
        • Demir K.
        • Shi Y.
        Genetic causes of rickets.
        J Clin Res Pediatr Endocrinol. 2017; 9: 88-105
        • Zivicnjak M.
        • Schnabel D.
        • Billing H.
        • et al.
        Age-related stature and linear body segments in children with X-linked hypophosphatemic rickets.
        Pediatr Nephrol. 2011; 26: 223-231
        • Zivicnjak M.
        • Franke D.
        • Ehrich J.H.H.
        • Filler G.
        Does growth hormone therapy harmonize distorted morphology and body composition in chronic renal failure?.
        Pediatr Nephrol. 2000; 15: 229-235
        • Chesher D.
        • Oddy M.
        • Darbar U.
        • et al.
        Outcome of adult patients with X-linked hypophosphatemia caused by PHEX gene mutations.
        J Inherit Metab Dis. 2018; 41: 865-876
        • Lamb Y.N.
        Burosumab: first Global Approval.
        Drugs. 2018; 78: 707-714
        • Imel E.A.
        • Glorieux F.H.
        • Whyte M.P.
        • et al.
        Burosumab versus conventional therapy in children with X-linked hypophosphataemia: a randomised, active-controlled, open-label, phase 3 trial.
        Lancet. 2019; 393: 2416-2427
        • Portale A.A.
        • Carpenter T.O.
        • Brandi M.L.
        • et al.
        Continued Beneficial Effects of Burosumab in adults with X-linked hypophosphatemia: results from a 24-Week treatment Continuation period after a 24-Week Double-Blind Placebo-controlled period.
        Calcif Tissue Int. 2019; 105: 271-284
        • Hamm L.L.
        • Nakhoul N.
        • Hering-Smith K.S.
        Acid-base Homeostasis.
        Clin J Am Soc Nephrol. 2015; 10: 2232-2242
        • Menegussi J.
        • Tatagiba L.S.
        • Vianna J.G.P.
        • Seguro A.C.
        • Luchi W.M.
        A physiology-based approach to a patient with hyperkalemic renal tubular acidosis.
        J Bras Nefrol. 2018; 40: 410-417
        • Kraut J.A.
        • Madias N.E.
        Serum anion gap: its Uses and Limitations in clinical medicine.
        Clin J Am Soc Nephrol. 2006; 2: 162-174
        • Patschan D.
        • Patschan S.
        • Ritter O.
        Chronic metabolic acidosis in chronic kidney disease.
        Kidney Blood Press Res. 2020; 45: 812-822
        • Kraut J.A.
        • Madias N.E.
        Differential diagnosis of Nongap metabolic acidosis: Value of a systematic approach.
        Clin J Am Soc Nephrol. 2012; 7: 671-679
        • Berend K.
        Review of the diagnostic evaluation of normal anion gap metabolic acidosis.
        Kidney Dis. 2017; 3: 149-159
        • Palmer B.F.
        • Clegg D.J.
        The Use of Selected urine Chemistries in the diagnosis of kidney disorders.
        Clin J Am Soc Nephrol. 2019; 14: 306-316
        • Igarashi T.
        • Sekine T.
        • Inatomi J.
        • Seki G.
        Unraveling the molecular Pathogenesis of isolated proximal renal tubular acidosis.
        J Am Soc Nephrol. 2002; 13: 2171-2177
        • Kim S.
        • Lee J.W.
        • Park J.
        • et al.
        The urine-blood PCO2 gradient as a diagnostic index of H+-ATPase defect distal renal tubular acidosis.
        Kidney Int. 2004; 66: 761-767
        • Walsh S.B.
        • Shirley D.G.
        • Wrong O.M.
        • Unwin R.J.
        Urinary acidification assessed by simultaneous furosemide and fludrocortisone treatment: an alternative to ammonium chloride.
        Kidney Int. 2007; 71: 1310-1316
        • Galla J.H.
        Metabolic alkalosis.
        J Am Soc Nephrol. 2000; 11: 369-375
        • Konrad M.
        • Nijenhuis T.
        • Ariceta G.
        • et al.
        Diagnosis and management of Bartter syndrome: executive summary of the consensus and recommendations from the European rare kidney disease reference Network working group for tubular disorders.
        Kidney Int. 2021; 99: 324-335
        • Downie M.L.
        • Lopez Garcia S.C.
        • Kleta R.
        • Bockenhauer D.
        Inherited tubulopathies of the kidney: insights from genetics.
        Clin J Am Soc Nephrol. 2021; 16: 620-630
        • Reichold M.
        • Klootwijk E.D.
        • Reinders J.
        • et al.
        Glycine Amidinotransferase (GATM), renal Fanconi syndrome, and kidney failure.
        J Am Soc Nephrol. 2018; 29: 1849-1858
        • Chang S.S.
        • Grunder S.
        • Hanukoglu A.
        • et al.
        Mutations in subunits of the epithelial sodium channel cause salt wasting with hyperkalaemic acidosis, pseudohypoaldosteronism type 1.
        Nat Genet. 1996; 12: 248-253
        • Pujo L.
        • Fagart J.
        • Gary F.
        • et al.
        Mineralocorticoid receptor mutations are the principal cause of renal type 1 pseudohypoaldosteronism.
        Hum Mutat. 2007; 28: 33-40
        • Rossi G.M.
        • Regolisti G.
        • Peyronel F.
        • Fiaccadori E.
        Recent insights into sodium and potassium handling by the aldosterone-sensitive distal nephron: implications on pathophysiology and drug discovery.
        J Nephrol. 2020; 33: 447-466
        • Schlingmann K.P.
        • Renigunta A.
        • Hoorn E.J.
        • et al.
        Defects in KCNJ16 cause a novel tubulopathy with hypokalemia, salt wasting, Disturbed acid-base Homeostasis, and sensorineural deafness.
        J Am Soc Nephrol. 2021; 32: 1498-1512
        • Verma S.
        • Chanchlani R.
        • Siu V.M.
        • Filler G.
        Transient hyponatremia of prematurity caused by mild Bartter syndrome type II: a case report.
        BMC Pediatr. 2020; 20: 311
        • Abdelhadi O.
        • Iancu D.
        • Stanescu H.
        • Kleta R.
        • Bockenhauer D.
        EAST syndrome: clinical, pathophysiological, and genetic aspects of mutations in KCNJ10.
        Rare Dis. 2016; 4: e1195043
        • Wong E.T.
        • Rude R.K.
        • Singer F.R.
        • Shaw Jr., S.T.
        A high prevalence of hypomagnesemia and hypermagnesemia in hospitalized patients.
        Am J Clin Pathol. 1983; 79: 348-352
        • Chen B.B.
        • Prasad C.
        • Kobrzynski M.
        • Campbell C.
        • Filler G.
        Seizures related to hypomagnesemia: a case Series and review of the literature.
        Child Neurol Open. 2016; 3 (2329048X16674834)
        • Warady B.A.
        • Abraham A.G.
        • Schwartz G.J.
        • et al.
        Predictors of Rapid progression of glomerular and Nonglomerular kidney disease in children and adolescents: the chronic kidney disease in children (CKiD) cohort.
        Am J Kidney Dis. 2015; 65: 878-888
        • Leung A.K.
        • Wong A.H.
        • Barg S.S.
        Proteinuria in children: Evaluation and differential diagnosis.
        Am Fam Physician. 2017; 95: 248-254
        • Lun A.
        • Ivandic M.
        • Priem F.
        • et al.
        Evaluation of pediatric nephropathies by a computerized urine protein expert system (UPES).
        Pediatr Nephrol. 1999; 13: 900-906
        • Salihu S.
        • Tosheska K.
        • Aluloska N.
        • Gucev Z.
        • Cekovska S.
        • Tasic V.
        The spectrum of kidney diseases in children associated with low molecular weight proteinuria.
        Open Access Maced J Med Sci. 2018; 6: 814-819
        • Tasic V.
        • Lozanovski V.J.
        • Korneti P.
        • et al.
        Clinical and laboratory features of Macedonian children with OCRL mutations.
        Pediatr Nephrol. 2011; 26: 557-562
        • Tasic V.
        • Korneti P.
        • Gucev Z.
        • Hoppe B.
        • Blau N.
        • Cheong H.I.
        Atypical presentation of distal renal tubular acidosis in two siblings.
        Pediatr Nephrol. 2008; 23: 1177-1181
        • Dhooria G.S.
        • Bains H.S.
        Nephrotic range proteinuria as a presenting feature of classical nephropathic cystinosis.
        Indian J Pediatr. 2014; 81: 712-714
        • Storm T.
        • Tranebjaerg L.
        • Frykholm C.
        • et al.
        Renal phenotypic investigations of megalin-deficient patients: novel insights into tubular proteinuria and albumin filtration.
        Nephrol Dial Transpl. 2013; 28: 585-591
        • Bockenhauer D.
        • Bokenkamp A.
        • van't Hoff W.
        • et al.
        Renal phenotype in Lowe Syndrome: a selective proximal tubular dysfunction.
        Clin J Am Soc Nephrol. 2008; 3: 1430-1436
        • Wrong O.M.
        • Norden A.G.
        • Feest T.G.
        Dent's disease; a familial proximal renal tubular syndrome with low-molecular-weight proteinuria, hypercalciuria, nephrocalcinosis, metabolic bone disease, progressive renal failure and a marked male predominance.
        QJM. 1994; 87: 473-493
        • Lun A.
        • Ziebig R.
        • Priem F.
        • Filler G.
        • Sinha P.
        Routine workflow for use of urine strips and urine flow cytometer UF-100 in the hospital laboratory.
        Clin Chem. 1999; 45: 1305-1307
        • Perfumo F.
        • Basile G.
        • Ginevri F.
        • Gusmano R.
        [The hyperaminoacidurias with special reference to cystinuria].
        Minerva Med. 1979; 70: 3065-3074
      2. Hashmi MS, Gupta V. Hartnup Disease. In: StatPearls [Internet]. Treasure Island, FL: StatPearls Publishing; May 2, 2022.

        • Gahl W.A.
        • Thoene J.G.
        • Schneider J.A.
        Cystinosis.
        The New Engl J Med. 2002; 347: 111-121
        • Topaloglu R.
        • Gulhan B.
        • Inozu M.
        • et al.
        The clinical and mutational spectrum of Turkish patients with cystinosis.
        Clin J Am Soc Nephrol. 2017; 12: 1634-1641https://doi.org/10.2215/CJN.00180117
        • Topaloglu R.
        Nephropathic cystinosis: an update on genetic conditioning.
        Pediatr Nephrol. 2021; 36: 1347-1352
        • Gultekingil Keser A.
        • Topaloglu R.
        • Bilginer Y.
        • Besbas N.
        Long-term endocrinologic complications of cystinosis.
        Minerva Pediatr. 2014; 66: 123-130
        • Topaloglu R.
        • Keser A.G.
        • Gulhan B.
        • et al.
        Cystinosis beyond kidneys: gastrointestinal system and muscle involvement.
        BMC Gastroenterol. 2020; 20: 242
        • Sonies B.C.
        • Almajid P.
        • Kleta R.
        • Bernardini I.
        • Gahl W.A.
        Swallowing dysfunction in 101 patients with nephropathic cystinosis: benefit of long-term cysteamine therapy.
        Medicine. 2005; 84: 137-146
        • Trauner D.A.
        • Spilkin A.M.
        • Williams J.
        • Babchuck L.
        Specific cognitive deficits in young children with cystinosis: evidence for an early effect of the cystinosin gene on neural function.
        J Pediatr. 2007; 151: 192-196
        • Emma F.
        • Nesterova G.
        • Langman C.
        • et al.
        Nephropathic cystinosis: an international consensus document.
        Nephrol Dial Transpl. 2014; 29: iv87-iv94
        • Ivanova E.A.
        • Arcolino F.O.
        • Elmonem M.A.
        • et al.
        Cystinosin deficiency causes podocyte damage and loss associated with increased cell motility.
        Kidney Int. 2016; 89: 1037-1048
        • Langman C.B.
        • Greenbaum L.A.
        • Grimm P.
        • et al.
        Quality of life is improved and kidney function preserved in patients with nephropathic cystinosis treated for 2 years with delayed-release cysteamine bitartrate.
        J Pediatr. 2014; 165: 528-533.e521
        • Emma F.
        • Hoff W.V.
        • Hohenfellner K.
        • et al.
        An international cohort study spanning five decades assessed outcomes of nephropathic cystinosis.
        Kidney Int. 2021; 100: 1112-1123https://doi.org/10.1016/j.kint.2021.06.019
        • Van Stralen K.J.
        • Emma F.
        • Jager K.J.
        • et al.
        Improvement in the renal prognosis in nephropathic cystinosis.
        Clin J Am Soc Nephrol. 2011; 6: 2485-2491
        • Chillaron J.
        • Font-Llitjos M.
        • Fort J.
        • et al.
        Pathophysiology and treatment of cystinuria.
        Nat Rev Nephrol. 2010; 6: 424-434
        • Alghamdi M.
        • Alhasan K.A.
        • Taha Elawad A.
        • et al.
        Diversity of phenotype and genetic Etiology of 23 cystinuria Saudi patients: a retrospective study.
        Front Pediatr. 2020; 8: 569389
        • Barbosa M.
        • Lopes A.
        • Mota C.
        • et al.
        Clinical, biochemical and molecular characterization of cystinuria in a cohort of 12 patients.
        Clin Genet. 2012; 81: 47-55
        • Malieckal D.A.
        • Modersitzki F.
        • Mara K.
        • Enders F.T.
        • Asplin J.R.
        • Goldfarb D.S.
        Effect of increasing doses of cystine-binding thiol drugs on cystine capacity in patients with cystinuria.
        Urolithiasis. 2019; 47: 549-555
        • Knoll T.
        • Zollner A.
        • Wendt-Nordahl G.
        • Michel M.S.
        • Alken P.
        Cystinuria in childhood and adolescence: recommendations for diagnosis, treatment, and follow-up.
        Pediatr Nephrol. 2005; 20: 19-24
        • Rezaee M.E.
        • Rule A.D.
        • Pais Jr., V.M.
        What are the main challenges to the pharmacological management of cystinuria?.
        Expert Opin Pharmacother. 2020; 21: 131-133
        • Cil O.
        • Perwad F.
        Alpha-lipoic acid (ALA) improves cystine solubility in cystinuria: report of 2 cases.
        Pediatrics. 2020; 145: e20192951https://doi.org/10.1542/peds.2019-2951
        • Bai Y.
        • Tang Y.
        • Wang J.
        • et al.
        Tolvaptan treatment of cystine urolithiasis in a mouse model of cystinuria.
        World J Urol. 2021; 39: 263-269
        • Nakayama A.
        • Matsuo H.
        • Abhishek A.
        • Ichida K.
        • Shinomiya N.
        Guideline Development Committee of Clinical Practice Guideline for Renal H. First clinical practice guideline for renal hypouricemia: a rare disorder that aided the development of urate-lowering drugs for gout.
        Rheumatology (Oxford). 2021; 60: 3961-3963https://doi.org/10.1093/rheumatology/keab322
        • Enomoto A.
        • Kimura H.
        • Chairoungdua A.
        • et al.
        Molecular identification of a renal urate anion exchanger that regulates blood urate levels.
        Nature. 2002; 417: 447-452
        • Dinour D.
        • Gray N.K.
        • Campbell S.
        • et al.
        Homozygous SLC2A9 mutations cause severe renal hypouricemia.
        J Am Soc Nephrol. 2010; 21: 64-72
        • Murakami T.
        • Kawakami H.
        • Fukuda M.
        • Furukawa S.
        Patients with renal hypouricemia are prone to develop acute renal failure--why?.
        Clin Nephrol. 1995; 43: 207-208
        • Kaneko K.
        • Taniguchi N.
        • Tanabe Y.
        • Nakano T.
        • Hasui M.
        • Nozu K.
        Oxidative imbalance in idiopathic renal hypouricemia.
        Pediatr Nephrol. 2009; 24: 869-871
        • Tasic V.
        • Hynes A.M.
        • Kitamura K.
        • et al.
        Clinical and functional characterization of URAT1 variants.
        PLoS One. 2011; 6: e28641
        • Stiburkova B.
        • Sebesta I.
        • Ichida K.
        • et al.
        Novel allelic variants and evidence for a prevalent mutation in URAT1 causing renal hypouricemia: biochemical, genetics and functional analysis.
        Eur J Hum Genet. 2013; 21: 1067-1073
        • Claverie-Martin F.
        • Trujillo-Suarez J.
        • Gonzalez-Acosta H.
        • et al.
        URAT1 and GLUT9 mutations in Spanish patients with renal hypouricemia.
        Clin Chim Acta. 2018; 481: 83-89https://doi.org/10.1016/j.cca.2018.02.030
        • Stiburkova B.
        • Gabrikova D.
        • Cepek P.
        • et al.
        Prevalence of URAT1 allelic variants in the Roma population.
        Nucleosides Nucleotides Nucleic Acids. 2016; 35: 529-535
        • Trepiccione F.
        • Walsh S.B.
        • Ariceta G.
        • et al.
        Distal renal tubular acidosis: ERKNet/ESPN clinical practice points.
        Nephrol Dial Transpl. 2021; 36: 1585-1596https://doi.org/10.1093/ndt/gfab171
        • Giglio S.
        • Montini G.
        • Trepiccione F.
        • Gambaro G.
        • Emma F.
        Distal renal tubular acidosis: a systematic approach from diagnosis to treatment.
        J Nephrol. 2021; 34: 2073-2083https://doi.org/10.1007/s40620-021-01032-y
        • Dhayat N.A.
        • Gradwell M.W.
        • Pathare G.
        • et al.
        Furosemide/fludrocortisone test and clinical Parameters to diagnose incomplete distal renal tubular acidosis in kidney stone formers.
        Clin J Am Soc Nephrol. 2017; 12: 1507-1517
        • Zhang J.
        • Fuster D.G.
        • Cameron M.A.
        • et al.
        Incomplete distal renal tubular acidosis from a heterozygous mutation of the V-ATPase B1 subunit.
        Am J Physiol Renal Physiol. 2014; 307: F1063-F1071
        • D'Ambrosio V.
        • Azzara A.
        • Sangiorgi E.
        • et al.
        Results of a gene Panel approach in a cohort of patients with incomplete distal renal tubular acidosis and nephrolithiasis.
        Kidney Blood Press Res. 2021; 46: 469-474
        • Bertholet-Thomas A.
        • Guittet C.
        • Manso-Silvan M.A.
        • et al.
        Safety, efficacy, and acceptability of ADV7103 during 24 months of treatment: an open-label study in pediatric and adult patients with distal renal tubular acidosis.
        Pediatr Nephrol. 2021; 36: 1765-1774
        • Lopez-Garcia S.C.
        • Emma F.
        • Walsh S.B.
        • et al.
        Treatment and long-term outcome in primary distal renal tubular acidosis.
        Nephrol Dial Transpl. 2019; 34: 981-991
        • Al Shibli A.
        • Narchi H.
        Bartter and Gitelman syndromes: spectrum of clinical manifestations caused by different mutations.
        World J Methodol. 2015; 5: 55-61
        • Bartter F.C.
        • Pronove P.
        • Gill J.R.
        • MacCardle R.C.
        Hyperplasia of the juxtaglomerular complex with hyperaldosteronism and hypokalemic alkalosis. A new syndrome. 1962.
        J Am Soc Nephrol. 1998; 9: 516-528
        • Cunha T.D.S.
        • Heilberg I.P.
        Bartter syndrome: causes, diagnosis, and treatment.
        Int J Nephrol Renovasc Dis. 2018; 11: 291-301https://doi.org/10.2147/IJNRD.S155397
        • Allison S.J.
        MAGED2 mutations in transient antenatal Bartter syndrome.
        Nat Rev Nephrol. 2016; 12: 377https://doi.org/10.1038/nrneph.2016.72
        • Gitelman H.J.
        • Graham J.B.
        • Welt L.G.
        A familial disorder characterized by hypokalemia and hypomagnesemia.
        Ann N Y Acad Sci. 1969; 162: 856-864
        • Mastroianni N.
        • Bettinelli A.
        • Bianchetti M.
        • et al.
        Novel molecular variants of the Na-Cl cotransporter gene are responsible for Gitelman syndrome.
        Am J Hum Genet. 1996; 59: 1019-1026
        • Zheng X.
        • Shang S.
        • Cai G.
        • Chen X.
        • Li Q.
        Genetic analysis of SLC12A3 gene and diagnostic process in patients with Gitelman syndrome.
        Clin Nephrol. 2021; 96: 165-174https://doi.org/10.5414/CN110425
        • Blanchard A.
        • Bockenhauer D.
        • Bolignano D.
        • et al.
        Gitelman syndrome: consensus and guidance from a kidney disease: Improving Global outcomes (KDIGO) Controversies Conference.
        Kidney Int. 2017; 91: 24-33
        • Khosravi M.
        • Walsh S.B.
        The long-term complications of the inherited tubulopathies: an adult perspective.
        Pediatr Nephrol. 2014; 30: 385-395
        • Puricelli E.
        • Bettinelli A.
        • Borsa N.
        • et al.
        Long-term follow-up of patients with Bartter syndrome type I and II.
        Nephrol Dial Transplant. 2010; 25: 2976-2981
        • Fujimura J.
        • Nozu K.
        • Yamamura T.
        • et al.
        Clinical and genetic characteristics in patients with Gitelman syndrome.
        Kidney Int Rep. 2019; 4: 119-125
        • Yang K.Q.
        • Xiao Y.
        • Tian T.
        • Gao L.G.
        • Zhou X.L.
        Molecular genetics of Liddle’s syndrome.
        Clin Chim Acta. 2014; 436: 202-206https://doi.org/10.1016/j.cca.2014.05.015
        • Enslow B.T.
        • Stockand J.D.
        • Berman J.M.
        Liddle’s syndrome mechanisms, diagnosis and management.
        Integr Blood Press Control. 2019; 12: 13-22https://doi.org/10.2147/IBPC.S188869
        • Bogdanović R.
        • Kuburović V.
        • Stajić N.
        • et al.
        Liddle syndrome in a Serbian family and literature review of underlying mutations.
        Eur J Pediatr. 2011; 171: 471-478
        • Bichet D.G.
        Vasopressin receptor mutations in nephrogenic diabetes insipidus.
        Semin Nephrol. 2008; 28: 245-251
        • Schoneberg T.
        • Schulz A.
        • Biebermann H.
        • et al.
        V2 vasopressin receptor dysfunction in nephrogenic diabetes insipidus caused by different molecular mechanisms.
        Hum Mutat. 1998; 12: 196-205
        • Schoneberg T.
        • Pasel K.
        • von Baehr V.
        • et al.
        Compound deletion of the rhoGAP C1 and V2 vasopressin receptor genes in a patient with nephrogenic diabetes insipidus.
        Hum Mutat. 1999; 14: 163-174
        • Garcia Castano A.
        • Perez de Nanclares G.
        • Madariaga L.
        • et al.
        Novel mutations associated with nephrogenic diabetes insipidus. A clinical-genetic study.
        Eur J Pediatr. 2015; 174: 1373-1385
        • Bockenhauer D.
        • Bichet D.G.
        Pathophysiology, diagnosis and management of nephrogenic diabetes insipidus.
        Nat Rev Nephrol. 2015; 11: 576-588
        • Moeller H.B.
        • Rittig S.
        • Fenton R.A.
        Nephrogenic diabetes insipidus: essential insights into the molecular background and potential therapies for treatment.
        Endocr Rev. 2013; 34: 278-301
        • Bernier V.
        • Morello J.P.
        • Zarruk A.
        • et al.
        Pharmacologic chaperones as a potential treatment for X-linked nephrogenic diabetes insipidus.
        J Am Soc Nephrol. 2006; 17: 232-243
        • Erdelyi L.S.
        • Balla A.
        • Patocs A.
        • Toth M.
        • Varnai P.
        • Hunyady L.
        Altered agonist sensitivity of a mutant v2 receptor suggests a novel therapeutic strategy for nephrogenic diabetes insipidus.
        Mol Endocrinol. 2014; 28: 634-643
        • D’Alessandri-Silva C.
        • Carpenter M.
        • Ayoob R.
        • et al.
        Diagnosis, treatment, and outcomes in children with congenital nephrogenic diabetes insipidus: a pediatric nephrology Research Consortium study.
        Front Pediatr. 2019; 7: 550-557https://doi.org/10.3389/fped.2019.00550
        • Jin Y.Y.
        • Huang L.M.
        • Quan X.F.
        • Mao J.H.
        Dent disease: classification, heterogeneity and diagnosis.
        World J Pediatr. 2021; 17: 52-57
        • Lieske J.C.
        • Milliner D.S.
        • Beara-Lasic L.
        • Harris P.
        • Cogal A.
        • Abrash E.
        Dent disease.
        in: Adam M.P. Ardinger H.H. Pagon R.A. GeneReviews®. University of Washington, Seattle, WA1993
        • Cho H.Y.
        • Lee B.H.
        • Choi H.J.
        • Ha I.S.
        • Choi Y.
        • Cheong H.I.
        Renal manifestations of Dent disease and Lowe syndrome.
        Pediatr Nephrol. 2008; 23: 243-249
        • Sakakibara N.
        • Nagano C.
        • Ishiko S.
        • et al.
        Comparison of clinical and genetic characteristics between Dent disease 1 and Dent disease 2.
        Pediatr Nephrol. 2020; 35: 2319-2326
        • Cebotaru V.
        • Kaul S.
        • Devuyst O.
        • et al.
        High citrate diet delays progression of renal insufficiency in the ClC-5 knockout mouse model of Dent's disease.
        Kidney Int. 2005; 68: 642-652
        • Dumic K.K.
        • Anticevic D.
        • Petrinovic-Doresic J.
        • et al.
        Lowe syndrome - old and new evidence of secondary mitochondrial dysfunction.
        Eur J Med Genet. 2020; 63: 104022
        • Lewis R.A.
        • Nussbaum R.L.
        • Brewer E.D.
        Lowe syndrome.
        in: Adam M.P. Ardinger H.H. Pagon R.A. GeneReviews®. University of Washington, Seattle, WA1993
        • Bokenkamp A.
        • Ludwig M.
        The oculocerebrorenal syndrome of Lowe: an update.
        Pediatr Nephrol. 2016; 31: 2201-2212
        • Zaniew M.
        • Bokenkamp A.
        • Kolbuc M.
        • et al.
        Long-term renal outcome in children with OCRL mutations: retrospective analysis of a large international cohort.
        Nephrol Dial Transpl. 2018; 33: 85-94