Advertisement

Effects of Prematurity and Growth Restriction on Adult Blood Pressure and Kidney Volume

      Gaining insight into the complex cycle of renal programming and its early-life clinical associations is essential to understand the origins of kidney disease. Prematurity and intrauterine growth restriction are associated with low nephron endowment. This increases the risk of developing hypertension and chronic kidney disease later in life. There is appreciable evidence to support mechanistic links between low nephron endowment secondary to intrauterine events and kidney size, kidney function, and blood pressure in postnatal life. A clear understanding of the cycle of developmental programming and consequences of fetal insults on the kidney is critical. In addition, the impact of events in the early postnatal period (accelerated postnatal growth, development of obesity, exposure to nephrotoxins) on the cardiovascular system and blood pressure of individuals born prematurely or with low birth weight is discussed. In summary, this review draws attention to the concepts of renal programming and nephron endowment and underscores the associations between intrauterine growth restriction, prematurity, and its clinical consequences in adult life.

      Key words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Advances in Chronic Kidney Disease
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Gjerde A.
        • Reisaeter A.V.
        • Skrunes R.
        • Marti H.P.
        • Vikse B.E.
        Intrauterine growth restriction and risk of diverse forms of kidney disease during the first 50 years of life.
        Clin J Am Soc Nephrol. 2020; 15: 1413-1423
        • Quigley R.
        Developmental changes in renal function.
        Curr Opin Pediatr. 2012; 24: 184-190
        • Mackenzie H.S.
        • Brenner B.M.
        Fewer nephrons at birth: a missing link in the aetiology of essential hypertension?.
        Am J Kidney Dis. 1995; 26: 91-98https://doi.org/10.1016/0272-6386(95)90161-2
        • Tain Y.L.
        • Hsu C.N.
        Developmental origins of chronic kidney disease: should we focus on early life?.
        Int J Mol Sci. 2017; 18: 381-396https://doi.org/10.3390/ijms18020381
        • Nüsken E.
        • Dötsch J.
        • Weber L.T.
        • Nüsken K.D.
        Developmental programming of renal function and re-programming approaches.
        Front Pediatr. 2018; 6: 1-9https://doi.org/10.3389/fped.2018.00036
        • Luyckx V.A.
        • Brenner B.M.
        Birth weight, malnutrition and kidney-associated outcomes – a global concern.
        Nat Rev Nephrol. 2015; 11: 135-149https://doi.org/10.1038/nrneph.2014.251
        • White S.L.
        • Perkovic V.
        • Cass A.
        • et al.
        Is low birth weight an antecedent of CKD in later life? A systematic review of observational studies.
        Am J Kidney Dis. 2009; 54: 248-261
        • Woods L.L.
        • Ingelfinger J.R.
        • Nyengaard J.R.
        • Rasch R.
        Maternal protein restriction suppresses the newborn renin-angiotensin system and programs adult hypertension in rats.
        Pediatr Res. 2001; 49: 460-467
        • Nishimura H.
        • Yerkes E.
        • Hohenfellner K.
        • et al.
        Role of the angiotensin type 2 receptor gene in congenital anomalies of the kidney and urinary tract, CAKUT, of mice and men.
        Mol Cell. 1999; 3: 1-10
        • Iosipiv I.V.
        • Schroeder M.
        A role for angiotensin II AT1 receptors in ureteric bud cell branching.
        Am J Physiol Ren Physiol. 2003; 285: F199-F207
        • Stangenberg S.
        • Nguyen L.T.
        • Chen H.
        • et al.
        Oxidative stress, mitochondrial perturbations and fetal programming of renal disease induced by maternal smoking.
        Int J Biochem Cell Biol. 2015; 64: 81-90https://doi.org/10.1016/j.biocel.2015.03.017
        • Mizuno M.
        • Siddique K.
        • Baum M.
        • Smith S.A.
        Prenatal programming of hypertension induces sympathetic overactivity in response to physical stress.
        Hypertension. 2013; 61: 180-186https://doi.org/10.1161/HYPERTENSIONAHA.112.19935
        • Briffa J.F.
        • Wlodek M.E.
        • Moritz K.M.
        Transgenerational programming of nephron deficits and hypertension.
        Semin Cell Dev Biol. 2020; 103: 94-103https://doi.org/10.1016/j.semcdb.2018.05.025
        • Wood-Bradley R.J.
        • Barrand S.
        • Giot A.
        • Armitage J.A.
        Understanding the role of maternal diet on kidney development; an opportunity to improve cardiovascular and renal health for future generations.
        Nutrients. 2015; 7: 1881-1905https://doi.org/10.3390/nu7031881
        • Luyckx V.A.
        • Brenner B.M.
        The clinical importance of nephron mass.
        JASN. 2010; 21: 898-910
        • Hughson M.
        • Farris A.B.
        • Douglas-Denton R.
        • Hoy W.E.
        • Bertram J.F.
        Glomerular number and size in autopsy kidneys: the relationship to birth weight.
        Kidney Int. 2003; 63: 2113-2122https://doi.org/10.1046/j.1523-1755.2003.00018.x
        • McNamara B.J.
        • Diouf B.
        • Hughson M.D.
        • Douglas-Denton R.N.
        • Hoy W.E.
        • Bertram J.F.
        Renal pathology, glomerular number and volume in a West African urban community.
        Nephrol Dial Transpl. 2008; 23: 2576-2585
        • Hoy W.E.
        • Hughson M.D.
        • Singh G.R.
        • Douglas-Denton R.
        • Bertram J.F.
        Reduced nephron number and glomerulomegaly in Australian Aborigines: a group at high risk for renal disease and hypertension.
        Kidney Int. 2006; 70: 104-110https://doi.org/10.1038/sj.ki.5000397
        • Gurusinghe S.
        • Tambay A.
        • Sethna C.B.
        Developmental origins and nephron endowment in hypertension.
        Front Pediatr. 2017; 5 (Published 2017 Jun 29): 1-8https://doi.org/10.3389/fped.2017.00151
        • Low Birth Weight and Nephron Number Working Group
        The impact of kidney development on the life course: a Consensus Document for action.
        Nephron. 2017; 136: 3-49
        • Luyckx V.A.
        • Shukha K.
        • Brenner B.M.
        Low nephron number and its clinical consequences.
        Rambam Maimonides Med J. 2011; 2e0061https://doi.org/10.5041/RMMJ.10061
        • West-Eberhard M.J.
        Developmental plasticity and the origin of species differences.
        Proc Natl Acad Sci U S A. 2005; 102 Suppl 1: 6543-6549
        • Brenner B.M.
        • Garcia D.L.
        • Anderson S.
        Glomeruli and blood pressure. Less of one, more the other?.
        Am J Hypertens. 1988; 1: 335-347
        • Moorthy H.K.
        • Venugopal P.
        Measurement of renal dimensions in vivo: a critical appraisal.
        Indian J Urol. 2011; 27: 169-175
        • DeFreitas M.J.
        • Katsoufis C.P.
        • Infante J.C.
        • Granda M.L.
        • Abitbol C.L.
        • Fornoni A.
        The old becomes new: advances in imaging techniques to assess nephron mass in children.
        Pediatr Nephrol. 2021; 36: 517-525https://doi.org/10.1007/s00467-020-04477-8
        • Bertram J.F.
        • Cullen-McEwen L.A.
        • Egan G.F.
        • et al.
        Why and how we determine nephron number.
        Pediatr Nephrol. 2014; 29: 575-580
        • Bennett K.M.
        • Baldelomar E.J.
        • Morozov D.
        • Chevalier R.L.
        • Charlton J.R.
        New imaging tools to measure nephron number in vivo: opportunities for developmental nephrology.
        J Dev Orig Health Dis. 2021; 12: 179-183
        • Bertram J.F.
        • Douglas-Denton R.N.
        • Diouf B.
        • Hughson M.D.
        • Hoy W.E.
        Human nephron number: implications for health and disease.
        Pediatr Nephrol. 2011; 26: 1529-1533https://doi.org/10.1007/s00467-011-1843-8
        • Hinchliffe S.A.
        • Lynch M.R.
        • Sargent P.H.
        • Howard C.V.
        • Van Velzen D.
        The effect of intrauterine growth retardation on the development of renal nephrons.
        Br J Obstet Gynaecol. 1992; 99: 296-301
        • Manalich R.
        • Reyes L.
        • Herrera M.
        • et al.
        Relationship between weight at birth and the number and size of renal glomeruli in hu- mans: a histomorphometric study.
        Kidney Int. 2000; 58: 770-773
        • Zhang Z.
        • Quinlan J.
        • Hoy W.
        • et al.
        A common RET variant is associated with reduced newborn kidney size and function.
        J Am Soc Nephrol. 2008; 19: 2027-2034
        • Rodriguez M.M.
        • Gomez A.H.
        • Abitbol C.L.
        • Chandar J.J.
        • Duara S.
        • Zilleruelo G.E.
        Histomorphometric analysis of postnatal glomerulogenesis in extremely preterm infants.
        Pediatr Dev Pathol. 2004; 7: 17-25https://doi.org/10.1007/s10024-003-3029-2
        • Hoogenboom L.A.
        • Wolfs T.G.A.M.
        • Hütten M.C.
        • Peutz-Kootstra C.J.
        • Schreuder M.F.
        Prematurity, perinatal inflammatory stress, and the predisposition to develop chronic kidney disease beyond oligonephropathy.
        Pediatr Nephrol. 2021; 36: 1673-1681
        • Chagnac A.
        • Zingerman B.
        • Rozen-Zvi B.
        • Herman-Edelstein M.
        Consequences of glomerular hyperfiltration: the role of physical forces in the pathogenesis of chronic kidney disease in diabetes and obesity.
        Nephron. 2019; 143: 38-42
        • Silver L.E.
        • Decamps P.J.
        • Korst L.M.
        • Platt L.D.
        • Castro L.
        Intrauterine growth restriction is accompanied by decreased renal volume in the human fetus.
        Am J Obstet Gynecol. 2003; 188: 1320-1325
        • Barker D.J.
        • Osmond C.
        • Golding J.
        • Kuh D.
        • Wadsworth M.E.
        Growth in utero, blood pressure in childhood and adult life, and mortality from cardiovascular disease.
        BMJ. 1989; 298: 564-567https://doi.org/10.1136/bmj.298.6673.564
        • Gennser G.
        • Rymark P.
        • Isberg P.E.
        Low birth weight and risk of high blood pressure in adulthood.
        Br Med J (Clin Res Ed). 1988; 296: 1498-1500https://doi.org/10.1136/bmj.296.6635.1498
        • Paquette K.
        • Fernandes R.O.
        • Xie L.F.
        • et al.
        Kidney size, renal function, Ang (angiotensin) peptides, and blood pressure in young adults born preterm the HAPI study.
        Hypertension. 2018; 72: 918-928
        • Abitbol C.L.
        • Seeherunvong W.
        • Galarza M.G.
        • et al.
        Neonatal kidney size and function in preterm infants: what is a true estimate of glomerular filtration rate?.
        J Pediatr. 2014; 164: 1026-1031.e2
        • Rakow A.
        • Johansson S.
        • Legnevall L.
        • et al.
        Renal volume and function in school-age children born preterm or small for gestational age.
        Pediatr Nephrol. 2008; 23: 1309-1315
        • Schmidt I.M.
        • Chellakooty M.
        • Boisen K.A.
        • et al.
        Impaired kidney growth in low-birth-weight children: distinct effects of maturity and weight for gestational age.
        Kidney Int. 2005; 68: 731-740
        • Hsu C.W.
        • Yamamoto K.Y.
        • Henry R.K.
        • De Roos A.J.
        • Flynn J.T.
        Prenatal risk factors for childhood CKD.
        J Am Soc Nephrol. 2014; 25: 2105-2111
        • Hallan S.
        • Euser A.M.
        • Irgens L.M.
        • Finken M.J.J.
        • Holmen J.
        • Dekker F.W.
        Effect of intrauterine growth restriction on kidney function at young adult age: the Nord Trondelag Health (HUNT 2) Study.
        Am J Kidney Dis. 2008; 51: 10-20
        • Crump C.
        • Sundquist J.
        • Winkleby M.A.
        • Sundquist K.
        Preterm birth and risk of chronic kidney disease from childhood into mid-adulthood: national cohort study.
        BMJ. 2019; 365: l1346https://doi.org/10.1136/bmj.l1346
        • Ruggajo P.
        • Skrunes R.
        • Svarstad E.
        • Skjærven R.
        • Reisæther A.V.
        • Vikse B.E.
        Familial factors, low birth weight, and development of ESRD: a Nationwide Registry study.
        Am J Kidney Dis. 2016; 67: 601-608
        • Gjerde A.
        • Skrunes R.
        • Reisæter A.V.
        • Marti H.P.
        • Vikse B.E.
        Familial contributions to the association between low birth weight and risk of chronic kidney disease in adult life.
        Kidney Int Rep. 2021; 6: 2151-2158https://doi.org/10.1016/j.ekir.2021.05.032
        • Barnett C.
        • Nnoli O.
        • Abdulmahdi W.
        • et al.
        Low birth weight is associated with impaired murine kidney development and function.
        Pediatr Res. 2017; 82: 340-348https://doi.org/10.1038/pr.2017.53
        • Luner L.J.
        • Hofman A.
        • Grobbee D.E.
        Relation between birthweight and blood pressure: longitudinal study of infants and children.
        BMJ. 1993; 307: 1451-1454
        • Hack M.
        • Schluchter M.
        • Cartar L.
        • Rahman M.
        Blood pressure among very low birth weight.
        Pediatr Res. 2005; 58: 677-684
        • Pyhälä R.
        • Räikkönen K.
        • Feldt K.
        • et al.
        Blood pressure responses to psychosocial stress in young adults with very low birth weight: Helsinki study of very low birth weight Adults.
        Pediatrics. 2009; 123: 731-734
        • Huxley R.R.
        • Alistair W.
        • Shiell A.W.
        • Law C.M.
        The role of size at birth and postnatal catch-up growth in determining systolic blood pressure: a systematic review of the literature.
        J Hypertens. 2000; 18: 815-831
        • Kudder-Hill L.
        • Ahlsson F.
        • Lundgren M.
        • Cutfield W.S.
        • Derraik J.G.B.
        Preterm birth is associated with increased blood pressure in young adult women.
        J Am Heart Assoc. 2019; 8e012274https://doi.org/10.1161/JAHA.119.012274
        • Keijzer-Veen M.G.
        • Arzu Dulger A.
        • Dekker F.W.
        • Nauta J.
        • van der Heijden B.J.
        Very preterm birth is a risk factor for increased systolic blood pressure at a young adult age.
        Pediatr Nephrol. 2010; 25: 509-516
        • Law C.M.
        • Shiell A.W.
        • Newsome C.A.
        • et al.
        Fetal, infant, and childhood growth and adult blood pressure A longitudinal study from birth to 22 years of age.
        Circulation. 2002; 105: 1088-1092
        • Ben-Shlomo Y.
        • McCarthy A.
        • Hughes R.
        • et al.
        Immediate postnatal growth is associated with blood pressure in young adulthood: the Barry Caerphilly Growth Study.
        Hypertension. 2008; 52: 638-644https://doi.org/10.1161/hypertensionaha.108.114256
        • Leunissen R.W.
        • Kerkhof G.F.
        • Stijnen T.
        • Hokken-Koelega A.
        Timing and tempo of first-year rapid growth in relation to cardiovascular and metabolic risk profile in early adulthood.
        JAMA. 2009; 301: 2234-2242https://doi.org/10.1001/jama.2009.761
        • Evelein A.M.
        • Visseren F.L.
        • van der Ent C.K.
        • et al.
        Excess early postnatal weight gain leads to thicker and stiffer arteries in young children.
        J Clin Endocrinol Metab. 2013; 98: 794-801https://doi.org/10.1210/jc.2012-3208
        • Jansen M.A.C.
        • Uiterwaal C.S.P.M.
        • van der Ent C.K.
        • Grobbee D.E.
        • Dalmeijer G.W.
        Excess early postnatal weight gain and blood pressure in healthy young children.
        J Dev Orig Health Dis. 2019; 10 (Epub 2019 Jan 30. PMID: 30696501): 563-569
        • Khalsa D.D.
        • Beydoun H.A.
        • Carmody J.B.
        Prevalence of chronic kidney disease risk factors among low birth weight adolescents.
        Pediatr Nephrol. 2016; 31: 1509-1516
        • Blencowe H.
        • Krasevec J.
        • de Onis M.
        • et al.
        National, regional, and worldwide estimates of low birthweight in 2015, with trends from 2000: a systematic analysis.
        Lancet Glob Health. 2019; 7: e849-e860https://doi.org/10.1016/s2214-109x(18)30565-5
        • Walani S.R.
        Global burden of preterm birth.
        Int J Gynecol Obstet. 2020; 150: 31-33
        • Luyckx V.A.
        • Al-Aly Z.
        • Bello A.K.
        • et al.
        Sustainable Development Goals relevant to kidney health: an update on progress.
        Nat Rev Nephrol. 2021; 17: 15-32https://doi.org/10.1038/s41581-020-00363-6
        • Owen C.G.
        • Whincup P.H.
        • Gilg J.A.
        • Cook D.G.
        Effect of breast feeding in infancy on blood pressure in later life: systematic review and meta-analysis.
        BMJ. 2003; 327: 1189-1195
        • Forsyth J.S.
        • Willatts P.
        • Agostoni C.
        • Bissenden J.
        • Casaer P.
        • Boehm G.
        Long chain polyunsaturated fatty acid supplementation in infant formula and blood pressure in later childhood: follow up of a randomised controlled trial.
        BMJ. 2003; 326: 953https://doi.org/10.1136/bmj.326.7396.953
        • Jackson A.A.
        • Dunn R.L.
        • Marchand M.C.
        • Langley-Evans S.C.
        Increased systolic blood pressure in rats induced by a maternal low-protein diet is reversed by dietary supplementation with glycine.
        Clin Sci (Lond). 2002; 103: 633-639
        • Cambonie G.
        • Comte B.
        • Yzydorczyk C.
        • et al.
        Antenatal antioxidant prevents adult hypertension, vascular dysfunction, and microvascular rarefaction associated with in utero exposure to a low-protein diet.
        Am J Physiol Regul Integr Comp Physiol. 2007; 292: R1236-R1245https://doi.org/10.1152/ajpregu.00227.2006