Advertisement

Pediatric Mineral and Bone Disorder of Chronic Kidney Disease and Cardiovascular Disease

      Chronic kidney disease is common and causes significant morbidity including shortened lifespans and decrease in quality of life for patients. The major cause of mortality in chronic kidney disease is cardiovascular disease. Cardiovascular disease within the chronic kidney disease population is closely tied with disordered calcium and phosphorus metabolism and driven in part by renal bone disease. The complex nature of renal, bone, and cardiovascular diseases was renamed as mineral and bone disorder of chronic kidney disease to encompass how bone disease drives vascular calcification and contributes to the development of long-term cardiovascular disease, and recent data suggest that managing bone disease well can augment and improve cardiovascular disease status. Pediatric nephrologists have additional obstacles in optimal mineral and bone disorder of chronic kidney disease management such as linear growth and skeletal maturation. In this article, we will discuss cardiovascular and bone diseases in chronic kidney disease and end-stage kidney disease patients with a focus on pediatric issues and concerns.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Advances in Chronic Kidney Disease
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Bieber S.D.
        • Gadegbeku C.A.
        A call to action for the kidney community: nephrologists' perspective on advancing American kidney health.
        Clin J Am Soc Nephrol. 2019; 14: 1799-1801
        • Mitsnefes M.M.
        Cardiovascular disease in children with chronic kidney disease.
        J Am Soc Nephrol. 2012; 23: 578-585
        • Johansen K.L.
        • Chertow G.M.
        • Foley R.N.
        • et al.
        US Renal Data System 2020 Annual Data Report: Epidemiology of Kidney Disease in the United States.
        Am J Kidney Dis. 2021; 77: A7-A8
        • Patel H.P.
        Early origins of cardiovascular disease in pediatric chronic kidney disease.
        Ren Fail. 2010; 32: 1-9
        • Foley R.N.
        • Parfrey P.S.
        • Sarnak M.J.
        Clinical epidemiology of cardiovascular disease in chronic renal disease.
        Am J Kidney Dis. 1998; 32: S112-S119
        • Go A.S.
        • Chertow G.M.
        • Fan D.
        • McCulloch C.E.
        • Hsu C.Y.
        Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization.
        N Engl J Med. 2004; 351: 1296-1305
        • Sarnak M.J.
        • Levey A.S.
        • Schoolwerth A.C.
        • et al.
        Kidney disease as a risk factor for development of cardiovascular disease: a statement from the American Heart Association councils on kidney in cardiovascular disease, high blood pressure research, clinical cardiology, and epidemiology and prevention.
        Circulation. 2003; 108: 2154-2169
        • Menon V.
        • Gul A.
        • Sarnak M.J.
        Cardiovascular risk factors in chronic kidney disease.
        Kidney Int. 2005; 68: 1413-1418
        • Oh J.
        • Wunsch R.
        • Turzer M.
        • et al.
        Advanced coronary and carotid arteriopathy in young adults with childhood-onset chronic renal failure.
        Circulation. 2002; 106: 100-105
        • Moe S.M.
        • Drüeke T.
        • Lameire N.
        • Eknoyan G.
        Chronic kidney disease-mineral-bone disorder: a new paradigm.
        Adv Chronic Kidney Dis. 2007; 14: 3-12
        • Moe S.
        • Drüeke T.
        • Cunningham J.
        • et al.
        Definition, evaluation, and classification of renal osteodystrophy: a position statement from Kidney Disease: Improving Global Outcomes (KDIGO).
        Kidney Int. 2006; 69: 1945-1953
        • Hruska K.A.
        • Choi E.T.
        • Memon I.
        • Davis T.K.
        • Mathew S.
        Cardiovascular risk in Chronic Kidney Disease (CKD): the CKD-Mineral Bone Disorder (CKD-MBD).
        Pediatr Nephrol. 2010; 25: 769-778
        • London G.M.
        • Guérin A.P.
        • Marchais S.J.
        • Métivier F.
        • Pannier B.
        • Adda H.
        Arterial media calcification in end-stage renal disease: impact on all-cause and cardiovascular mortality.
        Nephrol Dial Transplant. 2003; 18: 1731-1740
        • Moe S.M.
        Calcium as a cardiovascular toxin in CKD-MBD.
        Bone. 2017; 100: 94-99
        • Fujii H.
        • Joki N.
        Mineral metabolism and cardiovascular disease in CKD.
        Clin Exp Nephrol. 2017; 21: 53-63
        • Thompson B.
        • Towler D.A.
        Arterial calcification and bone physiology: role of the bone-vascular axis.
        Nat Rev Endocrinol. 2012; 8: 529-543
        • Ritter C.S.
        • Slatopolsky E.
        Phosphate toxicity in CKD: the killer among Us.
        Clin J Am Soc Nephrol. 2016; 11: 1088-1100
        • Urakawa I.
        • Yamazaki Y.
        • Shimada T.
        • et al.
        Klotho converts canonical FGF receptor into a specific receptor for FGF23.
        Nature. 2006; 444: 770-774
        • Shimada T.
        • Hasegawa H.
        • Yamazaki Y.
        • et al.
        FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis.
        J Bone Miner Res. 2004; 19: 429-435
        • Marks J.
        • Srai S.K.
        • Biber J.
        • Murer H.
        • Unwin R.J.
        • Debnam E.S.
        Intestinal phosphate absorption and the effect of vitamin D: a comparison of rats with mice.
        Exp Physiol. 2006; 91: 531-537
        • Komaba H.
        • Fukagawa M.
        FGF23-parathyroid interaction: implications in chronic kidney disease.
        Kidney Int. 2010; 77: 292-298
        • Clinkenbeard E.L.
        • Noonan M.L.
        • Thomas J.C.
        • et al.
        Increased FGF23 protects against detrimental cardio-renal consequences during elevated blood phosphate in CKD.
        JCI Insight. 2019; 4: e123817
        • Shalhoub V.
        • Shatzen E.M.
        • Ward S.C.
        • et al.
        FGF23 neutralization improves chronic kidney disease-associated hyperparathyroidism yet increases mortality.
        J Clin Invest. 2012; 122: 2543-2553
        • Hu M.C.
        • Kuro-o M.
        • Moe O.W.
        Klotho and chronic kidney disease.
        Contrib Nephrol. 2013; 180: 47-63
        • Kuro-o M.
        Klotho in chronic kidney disease--what's new?.
        Nephrol Dial Transplant. 2009; 24: 1705-1708
        • Koh N.
        • Fujimori T.
        • Nishiguchi S.
        • et al.
        Severely reduced production of klotho in human chronic renal failure kidney.
        Biochem Biophys Res Commun. 2001; 280: 1015-1020
        • Komaba H.
        • Goto S.
        • Fujii H.
        • et al.
        Depressed expression of Klotho and FGF receptor 1 in hyperplastic parathyroid glands from uremic patients.
        Kidney Int. 2010; 77: 232-238
        • Canalejo R.
        • Canalejo A.
        • Martinez-Moreno J.M.
        • et al.
        FGF23 fails to inhibit uremic parathyroid glands.
        J Am Soc Nephrol. 2010; 21: 1125-1135
        • Galitzer H.
        • Ben-Dov I.Z.
        • Silver J.
        • Naveh-Many T.
        Parathyroid cell resistance to fibroblast growth factor 23 in secondary hyperparathyroidism of chronic kidney disease.
        Kidney Int. 2010; 77: 211-218
        • Vogt I.
        • Haffner D.
        • Leifheit-Nestler M.
        FGF23 and phosphate-cardiovascular toxins in CKD.
        Toxins (Basel). 2019; 11: 647
        • Jimbo R.
        • Shimosawa T.
        Cardiovascular risk factors and chronic kidney disease-FGF23: a key molecule in the cardiovascular disease.
        Int J Hypertens. 2014; 2014: 381082
        • Isakova T.
        • Wahl P.
        • Vargas G.S.
        • et al.
        Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease.
        Kidney Int. 2011; 79: 1370-1378
        • Palmer S.C.
        • Hayen A.
        • Macaskill P.
        • et al.
        Serum levels of phosphorus, parathyroid hormone, and calcium and risks of death and cardiovascular disease in individuals with chronic kidney disease: a systematic review and meta-analysis.
        JAMA. 2011; 305: 1119-1127
        • Leopold J.A.
        Vascular calcification: mechanisms of vascular smooth muscle cell calcification.
        Trends Cardiovasc Med. 2015; 25: 267-274
        • Shroff R.
        • Long D.A.
        • Shanahan C.
        Mechanistic insights into vascular calcification in CKD.
        J Am Soc Nephrol. 2013; 24: 179-189
        • Moe S.M.
        • Chen N.X.
        Mechanisms of vascular calcification in chronic kidney disease.
        J Am Soc Nephrol. 2008; 19: 213-216
        • HOLMAN R.L.
        • McGILL H.C.
        • STRONG J.P.
        • GEER J.C.
        The natural history of atherosclerosis: the early aortic lesions as seen in New Orleans in the middle of the of the 20th century.
        Am J Pathol. 1958; 34: 209-235
        • Tejada C.
        • Strong J.P.
        • Montenegro M.R.
        • Restrepo C.
        • Solberg L.A.
        Distribution of coronary and aortic atherosclerosis by geographic location, race, and sex.
        Lab Invest. 1968; 18: 509-526
        • Berenson G.S.
        • Srinivasan S.R.
        • Bao W.
        • Newman W.P.
        • Tracy R.E.
        • Wattigney W.A.
        Association between multiple cardiovascular risk factors and atherosclerosis in children and young adults. The Bogalusa Heart Study.
        N Engl J Med. 1998; 338: 1650-1656
        • Mahoney L.T.
        • Burns T.L.
        • Stanford W.
        • et al.
        Coronary risk factors measured in childhood and young adult life are associated with coronary artery calcification in young adults: the Muscatine Study.
        J Am Coll Cardiol. 1996; 27: 277-284
        • McGill H.C.
        • McMahan C.A.
        • Zieske A.W.
        • et al.
        Associations of coronary heart disease risk factors with the intermediate lesion of atherosclerosis in youth. The Pathobiological Determinants of Atherosclerosis in Youth (PDAY) Research Group.
        Arterioscler Thromb Vasc Biol. 2000; 20: 1998-2004
        • Toth P.P.
        Subclinical atherosclerosis: what it is, what it means and what we can do about it.
        Int J Clin Pract. 2008; 62: 1246-1254
        • Brady T.M.
        • Schneider M.F.
        • Flynn J.T.
        • et al.
        Carotid intima-media thickness in children with CKD: results from the CKiD study.
        Clin J Am Soc Nephrol. 2012; 7: 1930-1937
        • Parekh R.S.
        • Carroll C.E.
        • Wolfe R.A.
        • Port F.K.
        Cardiovascular mortality in children and young adults with end-stage kidney disease.
        J Pediatr. 2002; 141: 191-197
        • Groothoff J.W.
        • Gruppen M.P.
        • Offringa M.
        • et al.
        Mortality and causes of death of end-stage renal disease in children: a Dutch cohort study.
        Kidney Int. 2002; 61: 621-629
        • Stonebrook E.
        • Mahan J.D.
        Treatment of growth retardation in a child with CKD.
        Clin J Am Soc Nephrol. 2019; 14: 1658-1660
        • Mahan J.D.
        • Warady B.A.
        • Committee C.
        Assessment and treatment of short stature in pediatric patients with chronic kidney disease: a consensus statement.
        Pediatr Nephrol. 2006; 21: 917-930
        • Seikaly M.G.
        • Salhab N.
        • Gipson D.
        • Yiu V.
        • Stablein D.
        Stature in children with chronic kidney disease: analysis of NAPRTCS database.
        Pediatr Nephrol. 2006; 21: 793-799
        • Park E.
        • Lee H.J.
        • Choi H.J.
        • et al.
        Incidence of and risk factors for short stature in children with chronic kidney disease: results from the KNOW-Ped CKD.
        Pediatr Nephrol. 2021; 36: 2857-2864
        • Rosenkranz J.
        • Reichwald-Klugger E.
        • Oh J.
        • Turzer M.
        • Mehls O.
        • Schaefer F.
        Psychosocial rehabilitation and satisfaction with life in adults with childhood-onset of end-stage renal disease.
        Pediatr Nephrol. 2005; 20: 1288-1294
        • Gerson A.C.
        • Wentz A.
        • Abraham A.G.
        • et al.
        Health-related quality of life of children with mild to moderate chronic kidney disease.
        Pediatrics. 2010; 125: e349-e357
        • De Schoenmakere G.
        • Vanholder R.
        • Rottey S.
        • Duym P.
        • Lameire N.
        Relationship between gastric emptying and clinical and biochemical factors in chronic haemodialysis patients.
        Nephrol Dial Transplant. 2001; 16: 1850-1855
        • Grant C.J.
        • Harrison L.E.
        • Hoad C.L.
        • Marciani L.
        • Gowland P.A.
        • McIntyre C.W.
        Patients with chronic kidney disease have abnormal upper gastro-intestinal tract digestive function: a study of uremic enteropathy.
        J Gastroenterol Hepatol. 2017; 32: 372-377
        • Lau W.L.
        • Kalantar-Zadeh K.
        • Vaziri N.D.
        The gut as a source of inflammation in chronic kidney disease.
        Nephron. 2015; 130: 92-98
        • Büscher A.K.
        • Büscher R.
        • Hauffa B.P.
        • Hoyer P.F.
        Alterations in appetite-regulating hormones influence protein-energy wasting in pediatric patients with chronic kidney disease.
        Pediatr Nephrol. 2010; 25: 2295-2301
        • Gutiérrez O.M.
        Sodium- and phosphorus-based food additives: persistent but surmountable hurdles in the management of nutrition in chronic kidney disease.
        Adv Chronic Kidney Dis. 2013; 20: 150-156
        • Gutiérrez O.M.
        Contextual poverty, nutrition, and chronic kidney disease.
        Adv Chronic Kidney Dis. 2015; 22: 31-38
        • Denburg M.R.
        • Tsampalieros A.K.
        • de Boer I.H.
        • et al.
        Mineral metabolism and cortical volumetric bone mineral density in childhood chronic kidney disease.
        J Clin Endocrinol Metab. 2013; 98: 1930-1938
        • Tönshoff B.
        • Kiepe D.
        • Ciarmatori S.
        Growth hormone/insulin-like growth factor system in children with chronic renal failure.
        Pediatr Nephrol. 2005; 20: 279-289
        • Lopez-Gonzalez M.
        • Munoz M.
        • Perez-Beltran V.
        • Cruz A.
        • Gander R.
        • Ariceta G.
        Linear growth in pediatric kidney transplant population.
        Front Pediatr. 2020; 8: 569616
        • Rodig N.M.
        • McDermott K.C.
        • Schneider M.F.
        • et al.
        Growth in children with chronic kidney disease: a report from the chronic kidney disease in children study.
        Pediatr Nephrol. 2014; 29: 1987-1995
        • McAlister L.
        • Pugh P.
        • Greenbaum L.
        • et al.
        The dietary management of calcium and phosphate in children with CKD stages 2-5 and on dialysis-clinical practice recommendation from the pediatric renal nutrition taskforce.
        Pediatr Nephrol. 2020; 35: 501-518
        • Wanner C.
        • Krane V.
        • März W.
        • et al.
        Atorvastatin in patients with type 2 diabetes mellitus undergoing hemodialysis.
        N Engl J Med. 2005; 353: 238-248
        • Hartiala O.
        • Magnussen C.G.
        • Kajander S.
        • et al.
        Adolescence risk factors are predictive of coronary artery calcification at middle age: the cardiovascular risk in young Finns study.
        J Am Coll Cardiol. 2012; 60: 1364-1370
        • Shroff R.C.
        • McNair R.
        • Skepper J.N.
        • et al.
        Chronic mineral dysregulation promotes vascular smooth muscle cell adaptation and extracellular matrix calcification.
        J Am Soc Nephrol. 2010; 21: 103-112
        • Rodelo-Haad C.
        • Santamaria R.
        • Muñoz-Castañeda J.R.
        • Pendón-Ruiz de Mier M.V.
        • Martin-Malo A.
        • Rodriguez M.
        FGF23, Biomarker or target?.
        Toxins (Basel). 2019; 11: 175
        • Faul C.
        • Amaral A.P.
        • Oskouei B.
        • et al.
        FGF23 induces left ventricular hypertrophy.
        J Clin Invest. 2011; 121: 4393-4408
        • Andrukhova O.
        • Slavic S.
        • Smorodchenko A.
        • et al.
        FGF23 regulates renal sodium handling and blood pressure.
        EMBO Mol Med. 2014; 6: 744-759
        • Forman J.P.
        • Williams J.S.
        • Fisher N.D.
        Plasma 25-hydroxyvitamin D and regulation of the renin-angiotensin system in humans.
        Hypertension. 2010; 55: 1283-1288
        • Shigematsu T.
        • Kono T.
        • Satoh K.
        • et al.
        Phosphate overload accelerates vascular calcium deposition in end-stage renal disease patients.
        Nephrol Dial Transplant. 2003; 18: iii86-iii89
        • Adeney K.L.
        • Siscovick D.S.
        • Ix J.H.
        • et al.
        Association of serum phosphate with vascular and valvular calcification in moderate CKD.
        J Am Soc Nephrol. 2009; 20: 381-387
        • El-Abbadi M.M.
        • Pai A.S.
        • Leaf E.M.
        • et al.
        Phosphate feeding induces arterial medial calcification in uremic mice: role of serum phosphorus, fibroblast growth factor-23, and osteopontin.
        Kidney Int. 2009; 75: 1297-1307
        • Lau W.L.
        • Linnes M.
        • Chu E.Y.
        • et al.
        High phosphate feeding promotes mineral and bone abnormalities in mice with chronic kidney disease.
        Nephrol Dial Transplant. 2013; 28: 62-69
        • Shroff R.C.
        • McNair R.
        • Figg N.
        • et al.
        Dialysis accelerates medial vascular calcification in part by triggering smooth muscle cell apoptosis.
        Circulation. 2008; 118: 1748-1757
        • Paoli S.
        • Mitsnefes M.M.
        Coronary artery calcification and cardiovascular disease in children with chronic kidney disease.
        Curr Opin Pediatr. 2014; 26: 193-197
        • Srivaths P.R.
        • Goldstein S.L.
        • Silverstein D.M.
        • Krishnamurthy R.
        • Brewer E.D.
        Elevated FGF 23 and phosphorus are associated with coronary calcification in hemodialysis patients.
        Pediatr Nephrol. 2011; 26: 945-951
        • Goodman W.G.
        • Goldin J.
        • Kuizon B.D.
        • et al.
        Coronary-artery calcification in young adults with end-stage renal disease who are undergoing dialysis.
        N Engl J Med. 2000; 342: 1478-1483
        • Kakajiwala A.
        • Pasch A.
        • Rogers R.
        • et al.
        Serum calcification propensity in children on chronic hemodialysis.
        Kidney Int Rep. 2020; 5: 1528-1531
        • Pasch A.
        • Block G.A.
        • Bachtler M.
        • et al.
        Blood calcification propensity, cardiovascular events, and survival in patients Receiving hemodialysis in the EVOLVE trial.
        Clin J Am Soc Nephrol. 2017; 12: 315-322
        • Pasch A.
        • Farese S.
        • Gräber S.
        • et al.
        Nanoparticle-based test measures overall propensity for calcification in serum.
        J Am Soc Nephrol. 2012; 23: 1744-1752
        • Mihai S.
        • Codrici E.
        • Popescu I.D.
        • et al.
        Inflammation-related mechanisms in chronic kidney disease prediction, progression, and outcome.
        J Immunol Res. 2018; 2018: 2180373
        • Hénaut L.
        • Massy Z.A.
        New insights into the key role of interleukin 6 in vascular calcification of chronic kidney disease.
        Nephrol Dial Transplant. 2018; 33: 543-548
        • Stenvinkel P.
        • Pecoits-Filho R.
        • Lindholm B.
        Coronary artery disease in end-stage renal disease: no longer a simple plumbing problem.
        J Am Soc Nephrol. 2003; 14: 1927-1939
        • Wallquist C.
        • Mansouri L.
        • Norrbäck M.
        • et al.
        Associations of fibroblast growth factor 23 with markers of inflammation and Leukocyte Transmigration in chronic kidney disease.
        Nephron. 2018; 138: 287-295
        • Hanks L.J.
        • Casazza K.
        • Judd S.E.
        • Jenny N.S.
        • Gutiérrez O.M.
        Associations of fibroblast growth factor-23 with markers of inflammation, insulin resistance and obesity in adults.
        PLoS One. 2015; 10: e0122885
        • Munoz Mendoza J.
        • Isakova T.
        • Ricardo A.C.
        • et al.
        Fibroblast growth factor 23 and inflammation in CKD.
        Clin J Am Soc Nephrol. 2012; 7: 1155-1162
        • David V.
        • Martin A.
        • Isakova T.
        • et al.
        Inflammation and functional iron deficiency regulate fibroblast growth factor 23 production.
        Kidney Int. 2016; 89: 135-146
        • Durlacher-Betzer K.
        • Hassan A.
        • Levi R.
        • Axelrod J.
        • Silver J.
        • Naveh-Many T.
        Interleukin-6 contributes to the increase in fibroblast growth factor 23 expression in acute and chronic kidney disease.
        Kidney Int. 2018; 94: 315-325
        • Egli-Spichtig D.
        • Imenez Silva P.H.
        • Glaudemans B.
        • et al.
        Tumor necrosis factor stimulates fibroblast growth factor 23 levels in chronic kidney disease and non-renal inflammation.
        Kidney Int. 2019; 96: 890-905
        • Han X.
        • Li L.
        • Yang J.
        • King G.
        • Xiao Z.
        • Quarles L.D.
        Counter-regulatory paracrine actions of FGF-23 and 1,25(OH)2 D in macrophages.
        FEBS Lett. 2016; 590: 53-67
        • Singh S.
        • Grabner A.
        • Yanucil C.
        • et al.
        Fibroblast growth factor 23 directly targets hepatocytes to promote inflammation in chronic kidney disease.
        Kidney Int. 2016; 90: 985-996
        • Agharazii M.
        • St-Louis R.
        • Gautier-Bastien A.
        • et al.
        Inflammatory cytokines and reactive oxygen species as mediators of chronic kidney disease-related vascular calcification.
        Am J Hypertens. 2015; 28: 746-755
        • Reynolds J.L.
        • Skepper J.N.
        • McNair R.
        • et al.
        Multifunctional roles for serum protein fetuin-a in inhibition of human vascular smooth muscle cell calcification.
        J Am Soc Nephrol. 2005; 16: 2920-2930
        • Aghagolzadeh P.
        • Bachtler M.
        • Bijarnia R.
        • et al.
        Calcification of vascular smooth muscle cells is induced by secondary calciprotein particles and enhanced by tumor necrosis factor-α.
        Atherosclerosis. 2016; 251: 404-414
        • Tintut Y.
        • Patel J.
        • Parhami F.
        • Demer L.L.
        Tumor necrosis factor-alpha promotes in vitro calcification of vascular cells via the cAMP pathway.
        Circulation. 2000; 102: 2636-2642
        • Shao J.S.
        • Cheng S.L.
        • Sadhu J.
        • Towler D.A.
        Inflammation and the osteogenic regulation of vascular calcification: a review and perspective.
        Hypertension. 2010; 55: 579-592
        • Mitsnefes M.M.
        • Kimball T.R.
        • Kartal J.
        • et al.
        Cardiac and vascular adaptation in pediatric patients with chronic kidney disease: role of calcium-phosphorus metabolism.
        J Am Soc Nephrol. 2005; 16: 2796-2803
        • Khandelwal P.
        • Murugan V.
        • Hari S.
        • et al.
        Dyslipidemia, carotid intima-media thickness and endothelial dysfunction in children with chronic kidney disease.
        Pediatr Nephrol. 2016; 31: 1313-1320
        • Ece A.
        • Gürkan F.
        • Kervancioğlu M.
        • et al.
        Oxidative stress, inflammation and early cardiovascular damage in children with chronic renal failure.
        Pediatr Nephrol. 2006; 21: 545-552
        • Taddei S.
        • Nami R.
        • Bruno R.M.
        • Quatrini I.
        • Nuti R.
        Hypertension, left ventricular hypertrophy and chronic kidney disease.
        Heart Fail Rev. 2011; 16: 615-620
        • Mitsnefes M.M.
        • Kimball T.R.
        • Kartal J.
        • et al.
        Progression of left ventricular hypertrophy in children with early chronic kidney disease: 2-year follow-up study.
        J Pediatr. 2006; 149: 671-675
        • Liu Y.
        • Li S.
        • Zeng Z.
        • et al.
        Kidney stones and cardiovascular risk: a meta-analysis of cohort studies.
        Am J Kidney Dis. 2014; 64: 402-410
        • Alexander R.T.
        • Hemmelgarn B.R.
        • Wiebe N.
        • et al.
        Kidney stones and cardiovascular events: a cohort study.
        Clin J Am Soc Nephrol. 2014; 9: 506-512
        • Devarajan A.
        Cross-talk between renal lithogenesis and atherosclerosis: an unveiled link between kidney stone formation and cardiovascular diseases.
        Clin Sci (Lond). 2018; 132: 615-626
        • Kusumi K.
        • Smith S.
        • Barr-Beare E.
        • et al.
        Pediatric origins of nephrolithiasis-associated atherosclerosis.
        J Pediatr. 2015; 167: 1074-1080.e2
        • Rule A.D.
        • Roger V.L.
        • Melton L.J.
        • et al.
        Kidney stones associate with increased risk for myocardial infarction.
        J Am Soc Nephrol. 2010; 21: 1641-1644
        • Denburg M.R.
        • Leonard M.B.
        • Haynes K.
        • et al.
        Risk of fracture in urolithiasis: a population-based cohort study using the health improvement network.
        Clin J Am Soc Nephrol. 2014; 9: 2133-2140
        • Lauderdale D.S.
        • Thisted R.A.
        • Wen M.
        • Favus M.J.
        Bone mineral density and fracture among prevalent kidney stone cases in the third National Health and Nutrition Examination Survey.
        J Bone Miner Res. 2001; 16: 1893-1898
        • Melton L.J.
        • Crowson C.S.
        • Khosla S.
        • Wilson D.M.
        • O'Fallon W.M.
        Fracture risk among patients with urolithiasis: a population-based cohort study.
        Kidney Int. 1998; 53: 459-464
        • Schwaderer A.L.
        • Cronin R.
        • Mahan J.D.
        • Bates C.M.
        Low bone density in children with hypercalciuria and/or nephrolithiasis.
        Pediatr Nephrol. 2008; 23: 2209-2214
        • Sas D.J.
        An update on the changing epidemiology and metabolic risk factors in pediatric kidney stone disease.
        Clin J Am Soc Nephrol. 2011; 6: 2062-2068
        • Hernandez J.D.
        • Ellison J.S.
        • Lendvay T.S.
        Current Trends, evaluation, and management of pediatric nephrolithiasis.
        JAMA Pediatr. 2015; 169: 964-970